Lead Image © Jakub Jirsak, 123RF.com

Lead Image © Jakub Jirsak, 123RF.com

SDS configuration and performance

Put to the Test

Article from ADMIN 37/2017
By
Software-defined storage promises centrally managed, heterogeneous storage with built-in redundancy. We examine how complicated it is to set up the necessary distributed filesystems. A benchmark shows which operations each system is best at tackling.

Frequently, technologies initially used in large data centers end up at some point in time in smaller companies' networks or even (as in the case of virtualization) on ordinary users' desktops. This process can be observed for software-defined storage (SDS), as well.

SDS basically converts hard drives from multiple servers into a large, redundant storage environment. The idea is that storage users have no need to worry about which specific hard drive their data is on. Equally, if individual components crash, users should be confident that the landscape has consistently saved the data so that it is always accessible.

This technology makes little sense in an environment with only one file server, but it is much more useful in large IT environments, where you can implement the scenario professionally with dedicated servers and combinations of SSDs and traditional hard drives. Usually, the components connect with each other and the clients over a 10Gb network.

However, SDS now also provides added value if several servers with idle disk space are waiting in small or medium-sized businesses. In this case, it can be interesting to combine this space using the distributed filesystems in a redundant array.

Candidate Lineup

Linux admins can immediately access several variants of such highly available, distributed filesystems. Well-known examples include GlusterFS [1] and Ceph [2], whereas LizardFS is relatively unknown [3]. In this article, I analyze the three systems and compare the read and write speeds in the test network in a benchmark.

Speed may be key for filesystems, but a number of other features are of interest, too. For example, depending on your use of the filesystem, sometimes sequential writing, sometimes

...
Use Express-Checkout link below to read the full article (PDF).

Buy this article as PDF

Express-Checkout as PDF
Price $2.95
(incl. VAT)

Buy ADMIN Magazine

SINGLE ISSUES
 
SUBSCRIPTIONS
 
TABLET & SMARTPHONE APPS
Get it on Google Play

US / Canada

Get it on Google Play

UK / Australia

Related content

  • Software-defined storage with LizardFS
    Standard hardware plus LizardFS equals a resilient, flexible, and configurable POSIX-compliant storage pool.
  • Getting Ready for the New Ceph Object Store

    The Ceph object store remains a project in transition: The developers announced a new GUI, a new storage back end, and CephFS stability in the just released Ceph v10.2.x, Jewel.

  • Ceph object store innovations
    The Ceph object store remains a project in transition: The developers announced a new GUI, a new storage back end, and CephFS stability in the just released Ceph c10.2.x, Jewel.
  • CephX Encryption

    We look at the new features in Ceph version 0.56, alias “Bobtail,” talk about who would benefit from CephX Ceph encryption, and show you how a Ceph Cluster can be used as a replacement for classic block storage in virtual environments.

  • What's new in Ceph
    Ceph and its core component RADOS have recently undergone a number of technical and organizational changes. We take a closer look at the benefits that the move to containers, the new setup, and other feature improvements offer.
comments powered by Disqus