Profiling Python code

In Profile

First Function Creation

The potential energy and force computations are the dominant part of the run time, so to better profile them, it is best to isolate that code in a function. Perhaps a bit counterintuitively, I created a function that initializes the algorithm and a second function for the update loops and called the resulting code md_002.py. (My modified code is available online.) Because the potential energy and force computations change very little, I won't be profiling this version of the code. All I did was make sure I was getting the same answers as in the previous version. However, feel free to practice profiling it.

Final Version

The final version of the code moves the section of code computing the potential energy and forces into a function for better profiling. The code, md_003.py, has a properties function that computes the potential energy and forces.

The cProfile results don't show anything useful, so I will skip that output. On the other hand, the pprofile output has some useful information (Listing 9). The excerpts mostly focus on the function that computes potential energy and forces. Notice that the overall time to run the code is still about 10 times longer.

Listing 9

md_003.py Output Excerpts

Command line: md_003.py
Total duration: 1459.49s
File: md_003.py
File duration: 1458.73s (99.95%)
Line #|      Hits|         Time| Time per hit|      %|Source code
------+----------+-------------+-------------+-------+-----------
     1|         0|            0|            0|  0.00%|# md test code
     2|         0|            0|            0|  0.00%|
     3|         2|  3.40939e-05|  1.70469e-05|  0.00%|import platform
     4|         1|  2.28882e-05|  2.28882e-05|  0.00%|from time import clock
(call)|         1|  2.71797e-05|  2.71797e-05|  0.00%|# :1009 _handle_fromlist
     5|         1|  2.69413e-05|  2.69413e-05|  0.00%|import numpy as np
(call)|         1|     0.751632|     0.751632|  0.05%|# :978 _find_and_load
     6|         1|  2.47955e-05|  2.47955e-05|  0.00%|from sys import exit
(call)|         1|  1.78814e-05|  1.78814e-05|  0.00%|# :1009 _handle_fromlist
     7|         1|  8.34465e-06|  8.34465e-06|  0.00%|import time
...
   160|        51|  0.000295162|  5.78749e-06|  0.00%|def properties(p_num, d_num, pos, vel, mass):
   161|         0|            0|            0|  0.00%|
   162|        50|  0.000397682|  7.95364e-06|  0.00%|    import numpy as np
   163|         0|            0|            0|  0.00%|
   164|         0|            0|            0|  0.00%|
   165|         0|            0|            0|  0.00%|    # compute force, potential, kinetic
   166|        50|  0.000529528|  1.05906e-05|  0.00%|    force = np.zeros([ d_num, p_num ])
   167|        50|  0.000378609|  7.57217e-06|  0.00%|    rij = np.zeros(d_num)
   168|         0|            0|            0|  0.00%|
   169|        50|  0.000226259|  4.52518e-06|  0.00%|    potential = 0.0
   170|         0|            0|            0|  0.00%|
   171|     25050|    0.0909703|  3.63155e-06|  0.01%|    for i in range(0, p_num):
   172|         0|            0|            0|  0.00%|
   173|         0|            0|            0|  0.00%|        #  Compute the potential energy and forces
   174|  12525000|      44.7758|  3.57492e-06|  3.07%|        for j in range(0, p_num):
   175|  12500000|      45.4399|  3.63519e-06|  3.11%|            if (i != j):
   176|         0|            0|            0|  0.00%|                #  Compute RIJ, the displacement vector
   177|  49900000|      183.525|  3.67786e-06| 12.57%|                for k in range(0, d_num):
   178|  37425000|      155.539|  4.15603e-06| 10.66%|                    rij[k] = pos[k,i] - pos[k,j]
   179|         0|            0|            0|  0.00%|                # end for
   180|         0|            0|            0|  0.00%|
   181|         0|            0|            0|  0.00%|                #  Compute D and D2, a distance and a truncated distance
   182|  12475000|      44.5996|  3.57512e-06|  3.06%|                d = 0.0
   183|  49900000|      184.464|  3.69668e-06| 12.64%|                for k in range(0, d_num):
   184|  37425000|      155.339|  4.15067e-06| 10.64%|                    d = d + rij[k] ** 2
   185|         0|            0|            0|  0.00%|                # end for
   186|  12475000|      68.8519|  5.51919e-06|  4.72%|                d = np.sqrt(d)
   187|  12475000|      56.0835|  4.49567e-06|  3.84%|                d2 = min(d, np.pi / 2.0)
   188|         0|            0|            0|  0.00%|
   189|         0|            0|            0|  0.00%|                #  Attribute half of the total potential energy to particle J
   190|  12475000|      74.6307|  5.98242e-06|  5.11%|                potential = potential + 0.5 * np.sin(d2) * np.sin(d2)
   191|         0|            0|            0|  0.00%|
   192|         0|            0|            0|  0.00%|                #  Add particle J's contribution to the force on particle I.
   193|  49900000|      199.233|  3.99264e-06| 13.65%|                for k in range(0, d_num):
   194|  37425000|      212.352|  5.67406e-06| 14.55%|                    force[k,i] = force[k,i] - rij[k] * np.sin(2.0 * d2) / d
   195|         0|            0|            0|  0.00%|                # end for
   196|         0|            0|            0|  0.00%|            # end if
   197|         0|            0|            0|  0.00%|
   198|         0|            0|            0|  0.00%|        # end for
   199|         0|            0|            0|  0.00%|    # end for
   200|         0|            0|            0|  0.00%|
   201|         0|            0|            0|  0.00%|    #  Compute the kinetic energy
   202|        50|  0.000184059|  3.68118e-06|  0.00%|    kinetic = 0.0
   203|       200|  0.000753641|  3.76821e-06|  0.00%|    for k in range(0, d_num):
   204|     75150|     0.265535|   3.5334e-06|  0.02%|        for j in range(0, p_num):
   205|     75000|     0.298971|  3.98628e-06|  0.02%|            kinetic = kinetic + vel[k,j] ** 2
   206|         0|            0|            0|  0.00%|        # end for
   207|         0|            0|            0|  0.00%|     # end for
   208|         0|            0|            0|  0.00%|
   209|        50|  0.000200987|  4.01974e-06|  0.00%|    kinetic = 0.5 * mass * kinetic
   210|         0|            0|            0|  0.00%|
   211|        50|  0.000211716|  4.23431e-06|  0.00%|    return force, kinetic, potential
   212|         0|            0|            0|  0.00%|
   213|         0|            0|            0|  0.00%|# end def
...

Again, most of the time in the code is spent in the properties function, which computes the potential energy and forces. The first few loops take up most of the time.

Out of curiosity, I looked at the output from line_profiler (Listing 10). Remember that all time percentages are relative to the time for that particular routine (not the entire code). The first couple of loops used a fair percentage of the run time. The last loop that computes the force array,

for k in range(0, d_num):
    force[k,i] = force[k,i] - rij[k] * np.sin (2.0 * d2) / d

used about 25 percent of the run time for this function.

Listing 10

md_003.py line_profiler Output

Total time: 358.778 s
File: ./md_003.py
Function: properties at line 159
Line #      Hits         Time  Per Hit   % Time  Line Contents
==============================================================
   159                                           @profile
   160                                           def properties(p_num, d_num, pos, vel, mass):
   161
   162        50        164.0      3.3      0.0      import numpy as np
   163
   164
   165                                               # compute force, potential, kinetic
   166        50        351.0      7.0      0.0      force = np.zeros([ d_num, p_num ])
   167        50        153.0      3.1      0.0      rij = np.zeros(d_num)
   168
   169        50         30.0      0.6      0.0      potential = 0.0
   170
   171     25050      14447.0      0.6      0.0      for i in range(0, p_num):
   172
   173                                                   #  Compute the potential energy and forces
   174  12525000    7036459.0      0.6      2.0          for j in range(0, p_num):
   175  12500000    7730669.0      0.6      2.2              if (i != j):
   176                                                           #  Compute RIJ, the displacement vector
   177  49900000   33530834.0      0.7      9.3                  for k in range(0, d_num):
   178  37425000   39827594.0      1.1     11.1                      rij[k] = pos[k,i] - pos[k,j]
   179                                                           # end for
   180
   181                                                           #  Compute D and D2, a distance and a truncated distance
   182  12475000    7182783.0      0.6      2.0                  d = 0.0
   183  49900000   33037923.0      0.7      9.2                  for k in range(0, d_num):
   184  37425000   39131501.0      1.0     10.9                      d = d + rij[k] ** 2
   185                                                           # end for
   186  12475000   25236413.0      2.0      7.0                  d = np.sqrt(d)
   187  12475000   13375864.0      1.1      3.7                  d2 = min(d, np.pi / 2.0)
   188
   189                                                           #  Attribute half of the total potential energy to particle J
   190  12475000   31104186.0      2.5      8.7                  potential = potential + 0.5 * np.sin(d2) * np.sin(d2)
   191
   192                                                           #  Add particle J's contribution to the force on particle I.
   193  49900000   34782251.0      0.7      9.7                  for k in range(0, d_num):
   194  37425000   86664317.0      2.3     24.2                      force[k,i] = force[k,i] - rij[k] * np.sin(2.0 * d2) / d
   195                                                           # end for
   196                                                       # end if
   197
   198                                                   # end for
   199                                               # end for
   200
   201                                               #  Compute the kinetic energy
   202        50         33.0      0.7      0.0      kinetic = 0.0
   203       200        147.0      0.7      0.0      for k in range(0, d_num):
   204     75150      44048.0      0.6      0.0          for j in range(0, p_num):
   205     75000      78144.0      1.0      0.0              kinetic = kinetic + vel[k,j] ** 2
   206                                                   # end for
   207                                                # end for
   208
   209        50         47.0      0.9      0.0      kinetic = 0.5 * mass * kinetic
   210
   211        50         37.0      0.7      0.0      return force, kinetic, potential

If you look at this routine in the md_003.py file, I'm sure you can find some optimizations that would improve performance.

Using Numba

As part of the profiling, I moved parts of the code to functions. With Python, this allowed me to perform deterministic profiling without resulting in a long run time. Personally, I like deterministic profiling better than statistical because I don't have to find the time interval that results in a good profile.

Putting parts of the code in functions provides a good starting point for using Numba. I described the use of Numba in a previous high-performance Python article [2]. I made a few more changes to the last version of the code (md_003.py) and, because the properties routine took a majority of the run time, I targeted this routine with Numba and simply used jit to compile the code.

The original code, before using Numba, was around 140 seconds on my laptop. After using Numba and running on all eight cores of my laptop (four "real" cores and four hyper-threading (HT) cores), it ran in about 3.6 seconds. I would call that a success.

Buy this article as PDF

Express-Checkout as PDF
Price $2.95
(incl. VAT)

Buy ADMIN Magazine

SINGLE ISSUES
 
SUBSCRIPTIONS
 
TABLET & SMARTPHONE APPS
Get it on Google Play

US / Canada

Get it on Google Play

UK / Australia

Related content

  • Profiling Python Code

    Profiling Python code – as a whole or by function – shows where you should spend time speeding up your programs.

comments powered by Disqus
Subscribe to our ADMIN Newsletters
Subscribe to our Linux Newsletters
Find Linux and Open Source Jobs



Support Our Work

ADMIN content is made possible with support from readers like you. Please consider contributing when you've found an article to be beneficial.

Learn More”>
	</a>

<hr>		    
			</div>
		    		</div>

		<div class=