
Squid Proxy
Encryption in a proxy
server environment

 Get Started
with SSH
SSL AUTHENTICATION
WITH APACHE

US$ 7.95

Scripting Tricks
Building OpenSSL into
your Bash scripts

VNC in SSH
Remote control
in an SSH tunnel

ADMIN
Network & Security

 Tricks with SSL
and SSH

Digital

Special

w w w . a d m i n - m a g a z i n e . c o m

Our ADMIN Online website offers additional news
and technical articles you won’t see in our print
magazines.

Subscribe today to our free ADMIN Update
newsletter and receive:
• Helpful updates on our best online features
• Timely discounts and special bonuses

available only to newsletter readers
• Deep knowledge of the new IT

Too Swamped to Surf?

www.admin-magazine.com/newsletter

©
Y

u
ri A

rcu
rs, foto

lia
.co

m

LNM_AdminUpdate_1-1.indd 1 7/9/12 2:08:50 PM

 Tricks with SSL and SSH
ADMIN

Network & Security

Contact Info

Editor in Chief
	 Joe Casad, jcasad@admin-magazine.com

Managing Editor
	� Rita L Sooby, rsooby@admin-magazine.com

Localization & Proofreading
	� Ian Travis

Amber Ankerholz

Layout and Graphic Design
	 Dena Friesen, Lori White

Advertising
	 www.admin-magazine.com/Advertise
	 Ann Jesse, ajesse@admin-magazine.com
	 Phone: +1-785-841-8834

Corporate Management (Vorstand)
	 Hermann Plank, hplank@linuxnewmedia.de
	 Brian Osborn, bosborn@linuxnewmedia.com

Publisher
	 Brian Osborn, bosborn@linuxnewmedia.com

Marketing Communications
	 Darrah Buren, dburen@linuxnewmedia.com

Customer Service / Subscription
	 For USA and Canada:
	 Email: cs@admin-magazine.com
	 Phone: 1-866-247-2802
	 (toll-free from the US and Canada)

	 www.admin-magazine.com

While every care has been taken in the content of
the magazine, the publishers cannot be held re-
sponsible for the accuracy of the information con-
tained within it or any consequences arising from
the use of it.

Copyright and Trademarks © 2012 Linux New
Media Ltd.

No material may be reproduced in any form what-
soever in whole or in part without the written per-
mission of the publishers. It is assumed that all
correspondence sent, for example, letters, email,
faxes, photographs, articles, drawings, are
supplied for publication or license to third parties
on a non-exclusive worldwide basis by Linux New
Media unless otherwise stated in writing.

All brand or product names are trademarks
of their respective owners. Contact us if we
haven’t credited your copyright; we will always
correct any oversight.

Printed in Germany

ADMIN ISSN 2045-0702

ADMIN is published by Linux New Media USA,
LLC, 616 Kentucky St, Lawrence, KS 66044, USA.

Dear Readers:

The need for encryption has never been greater. Amateur crackers, professional
cyber-thieves, corporate secret seekers, and even international espionage agents
are at large right now on the Internet. Toolkits are readily available for cracking
passwords and highjacking connections, and your best protection is to conceal the
details of your Internet presence so a would-be intruder doesn’t discover that one
clue that will unravel your careful protections.

SSL and SSH are important tools for keeping your Internet communications con-
fidential. The TLS/SSL protocol system adds encryption to the TCP/IP protocol
stack, letting servers and clients operate through an encrypted channel that is im-
mune from conventional eavesdropping. SSH is a protocol – and an accompanying
set of utilities – designed to provide a secure shell environment for command-line
management tasks across a public network.

This special edition of ADMIN magazine explores some tricks for using SSL and
SSH effectively on real-world networks. The emphasis is on advanced techniques
for experienced admins. If you are looking for strategies for locking down your net-
work and keeping your communication private, this special edition will give you
lots of answers and plenty of ideas for your own network.

Joe Casad
Editor in Chief
ADMIN Magazine

Table of Contents

8Squid Proxy with HTTPS
We'll show you how to support secure Internet
sessions in a proxy server environment.

12OpenSSL with Bash
It is easy to integrate OpenSSL into your Bash
scripts. Learn some techniques for building
encryption into your automation.

16Getting Started
with SSH

Build a secure tunnel for private
communication with the Secure Shell.

20VNC in SSH
Operate a VNC remote control session through
an SSH tunnel.

24SSH Tricks
Dynamic forwarding, a TUN/TAP tunnel, and
other tricks for putting SSH to work in the
real world.

30Perl: Drilling SSH
This handy Perl script that tunnels mail traffic
will give you ideas for your own SSH solutions.

4SSL Authentication with Apache
Set up your Apache web server for SSL authentication.

3A D M I N S p ec ia l : T R I C KS w it h SS L and SS Hw w w. admin - ma ga z in e .co m

T ri c ks w it h ss l and ss hWelcome

F
orums, blogs, or content manage-
ment systems usually have their
own authentication systems. But
the web server itself also allows

access control – almost every user has
already seen the .htaccess query (Figure
1). Recently, OpenID authentication has
become common, in which only one
identity is used as a kind of single sign-
on to access different pages. One prob-
lem these possibilities have in common
is that they only require two pieces of
data: a user name and a password.
Should this information end up in the
wrong hands, all doors are open.

Authentication via certificate is a
much safer alternative: No password is

transmitted at login time; instead a key
is stored as a file on the hard drive. This
file is in turn protected by a password so
that a potential intruder would need not
only the key, but also the secret pass-
word. And the password can easily be
changed at any time. If that is still too
risky, you can save the certificate on a
USB token or a smart card.

Many users are already familiar with
this principle of certificate-based authen-
tication from email encryption, because
both PGP and S/​MIME use password-
protected keys. In most cases, people
who manage many servers also use cer-
tificate-based logins via SSH that trans-
mit a key instead of a password.

Keys, certificates, certification author-
ity – at first,
this all
sounds
quite com-
plicated, but
this ap-
proach of-
fers tangible
benefits. For

SSL authentication with Apache

 Close the Page

Website logins with user names and passwords can be dangerous. The Apache web server

provides more security with a certificate-based login. By Florian Effenberger

Figure 1: The classic login with .htaccess has one weak point: If the login cre-

dentials end up in the wrong hands, all doors are open.

SNI, which stands for Server Name In-
dication, solves a problem with SSL
that has existed for years. Previously,
Apache was only able to operate ex-
actly one encrypted domain per IP ad-
dress. With SNI, the browser first sends
the address you want in unencrypted
form, which allows the use of multiple
SSL domains per IP address. And that
is extremely useful – especially in times
when IPv4 addresses are scarce. Newer
versions of Apache (from Ubuntu 10.04
and up), as well as Firefox 4.0, support
SNI. Windows Vista or later with Inter-
net Explorer 7 or later supports SNI,
but Windows XP is not SNI capable
with any IE version.

 What is SNI?

Florian Effenberger has been a free and
open source evangelist for many years.
Pro bono, he is on the Board of Directors
at The Document Foundation. He was
previously active in the OpenOffice.org
project for seven years, most recently as
Marketing Project Lead. He is also a
frequent contributor to a variety of
professional magazines worldwide.

 Author

4 A D M I N S p ec ia l : T R I C KS w it h SS L and SS H w w w. admin - ma ga z in e .co m

SSL WITH APACHET ri c ks w it h ss l and ss h

one thing, the need for the certificate or
access to the smart card represents a
much greater obstacle to attackers than
just a password prompt. On the other
hand, many organizations already issue
certificates to their employees anyway.
Furthermore, certificates are much more
convenient to manage centrally than
simple passwords, because by design
they already support limited periods of
validity and blacklists.

However, this kind of authentication
also has disadvantages: A quick login to
the server from a colleague’s PC won’t
work, and you can’t access important
data should the key be lost due to a
crash. And this kind of security measure
only makes sense if all employees re-
ceive their own key. But it is precisely
because this method does not allow a
login from just any device that it makes
a significant contribution to security.

Basic Encryption
The test system on both the client and
the server is Ubuntu 10.10. For the web
server, we used Apache from the Ubuntu
package source; the browser is Firefox.
Install Apache as follows

apt‑get install apache2‑suexec U

apache2‑mpm‑prefork

After installation, activate the SSL mod-
ule at the command line by typing sudo
a2enmod ssl. To enable SNI (see the box
“What is SNI?”), add a NameVirtualHost

*:443 entry to your /
etc/apache2/ports.
conf file under the
existing line, and fi-
nally restart Apache
by entering sudo/
etc/init.d/apache2
reload.

The web server
must first be capa-
ble of delivering encrypted pages before
it can accept certificates for login. For
this reason, first set up a normal SSL-en-
crypted page and make sure it is work-
ing. Only add authentication after the
initial SSL configuration has been com-
pleted. If the virtual page is missing,
remedy that with the following steps:
1.	In the folder /etc/apache2/

sites‑available/vhost_name.DMN.tld,
create a file with the contents of List-
ing 1. This describes the virtual host,
and will also be used later to configure
the authentication. Instead of vhost_
name.dmn.tld, use the name of the
page. If a chained SSL certificate is
used, then also add the following line:
be SSLCertificateChainFile/etc/ssl/
certs/vhost_name.dmn.tld.chain

2.	Type mkdir ‑p /var/www/sites/vhost_
name.dmn.tld to create a directory in
which you will be storing the contents
of the website.

3.	Now activate the new page by typing
a2ensite vhost_name.dmn.tld, and then
restart Apache.

4.	Start up a firewall, then open TCP port
443, for example, by typing sudo ufw
allow 443/tcp.

The SSL certificate for operating the site
and the corresponding key are created
with the same tools that you also use for
certificate management. For a first test, it
is perfectly okay to create a certificate
manually. Listing 2 shows how to do this.
As an alternative – but an impractical one
for large companies because of the high
costs – you can use an intermediate cer-

<VirtualHost *:443>

ServerName vhost.dmn.tld

DocumentRoot /var/www/sites/vhost.dmn.tld

SSLEngine On

SSLCertificateFile /etc/ssl/certs/vhost.dmn.tld.crt

SSLCertificateKeyFile /etc/ssl/private/vhost.dmn.tld.key

</VirtualHost>

 Listing 1: Creating a Virtual Page

f you also define an unencrypted virtual
host for the same address, as seen in
Listing 4, make sure it either immedi-
ately redirects all requests, or, as in the
example, it additionally refers to an

empty path. Otherwise, your suppos-
edly protected content can be freely ac-
cessed over the normal HTTP protocol,
because the SSLVerifyClient directive
does not apply.

 Security Risk with Multiple Virtual Hosts

shop.linuxnewmedia.com

✔ Don’t miss a single issue!

✔ Huge savings – Save more than 35% off
the cover price!

✔ Free DVD – Each issue includes
a Free DVD!

The first print magazine created specifically for Ubuntu users! Ease into Ubuntu with the helpful Discovery Guide,
or advance your skills with in-depth technical articles, HOW-TOs, reviews, tutorials, and much, much more.

Don’t miss a single issue!

subscribe now!
4 issues per year for only

£ 24.90 / EUR 29.90 / US$ 39.95

LNM_UU_sub_1-3hz.indd 1 8/28/12 11:20:22 AM

T ri c ks w it h ss l and ss hSSL WITH APACHE

the master password or after selecting the
corresponding certificate. In the case of
Firefox, be sure that Ask me every time is
enabled under Edit | Preferences | Ad-
vanced | Encryption (Figure 2). This will
help discover errors, at least during instal-
lation on the server. After configuring the
server and adding the certificate to the
browser, the browser will prompt you for
it the next time you visit the page.

This technique allows password pro-
tection with .htaccess for individual di-
rectories or addresses. For example, in
order to protect only the Wiki website,
configure the virtual host as shown in
Listing 4. Listing 4 also shows how you
can automatically redirect all unen-
crypted calls with mod_rewrite. Caution:
There is a security risk involved here
that is described in the “Security Risk
with Multiple Virtual Hosts” box. But
you first need to activate mod_rewrite by
typing a2enmod rewrite. By the way, it is
not necessary to use mod_rewrite; it
only saves users from having to type in
the HTTPS protocol by hand.

Conclusions
Configuring authentication by certificate
might take some effort, but it offers sig-
nificant security benefits compared with
a password-based login procedure. If you
decide to set up your own certificate au-
thority, you should plan carefully. In
production operations, be sure to add a
certificate revocation list (CRL). Further-
more, to protect yourself against com-
promise, consider the use of intermedi-
ate CAs. A good overview of the server
side is provided by Apache’s own docu-
mentation ([1], [2]). nnn

tificate of your own from your provider.
Now, when you access the website in

your browser – if the certificate is not
from a known CA (Certificate Authority)
– you will see an error message. After
you confirm the warning, the address
bar of the browser will show a symbol
highlighted in blue, indicating that en-
cryption is active.

Admission with Valid Ticket
Only
The web server must be told that not only
the connection should be encrypted, but

that clients should also be authenticated
with an SSL certificate. The valid keys do
not need to be set individually, but rather
all permitted CAs are saved in a file.
When a client presents a certificate
signed by one of the CAs referred to in
the file, Apache grants access.

If you already have a CA and the
users’ browsers have been configured
correctly, you only need to add the lines
from Listing 3 to the virtual host in /etc/
apache2/sites‑available/vhost_name.dmn.
tld and restart Apache.

Line 1 says that all certificates signed
by a CA listed in /
etc/ssl/certs/in‑
tranet‑ca.crt are
valid for logging
in. The directive in
Line 2 enforces
login by certificate
with (require).
Please note: With-
out this statement,
no authentication
will take place.
Line 3 allows five
intermediate certif-
icates, which is
particularly impor-
tant for large CAs.
If all certificates
come directly from
the CA without in-
termediate CAs,
then enter 1 here.

Depending on
the browser, au-
thentication takes
place automati-
cally after entering

Figure 2: Especially while setting up the server, it is helpful to have

Firefox prompt for the certificate every time.

<VirtualHost *:80>

ServerName vhost.dmn.tld

DocumentRoot /var/www/sites/vhost.dmn.tld‑80

RewriteEngine on

RewriteRule ^(.*) https://%{SERVER_NAME}$1 [NE,L]

</VirtualHost>

<VirtualHost *:443>

ServerName vhost.dmn.tld

DocumentRoot /var/www/sites/vhost.dmn.tld

SSLEngine On

SSLCertificateFile /etc/ssl/certs/vhost.dmn.tld.crt

SSLCertificateKeyFile /etc/ssl/private/vhost.dmn.tld.key

<Location /wiki>

SSLCACertificateFile /etc/ssl/certs/intranet‑ca.crt

SSLVerifyClient require

SSLVerifyDepth 5

</Location>

</VirtualHost>

 Listing 4: Handling an Unencrypted Virtual Server

[1]	� Apache documentation on mod_ssl:
http://​httpd.​apache.​org/​docs/​current/​mod/​mod_ssl.​html

[2]	� Apache SSL-Howto:
http://​httpd.​apache.​org/​docs/​current/​ssl/​ssl_howto.​html

 Info

D
IG

IT
A

L
&

 P
R

IN
T

SU
B

SC
R

IP
TI

O
N

S
SP

eC
IA

L
eD

IT
IO

N
S

• LPIC-1 LPI 101 - CompTIA Linux+ LX0-101

• LPIC-1 LPI 102 - CompTIA Linux+ LX0-102

• LPIC-1 - CompTIA Linux+ 101 + 102

 T
R

A
IN

IN
G

Shop the Shop shop.linuxnewmedia.com

s h o p . l i n u x n e w m e d i a . c o m

Want to subscribe?

Need training?

Searching for that back issue you really wish you‘d picked up at the newsstand?

Discover the past and invest in a new year of IT
solutions at Linux New Media‘s online store.

LNM_OnlineShop_1-1.indd 1 8/28/12 11:34:04 AM

$ �openssl req ‑new > vhost.dmn.tld.csr ‑newkey
rsa:2048 ‑keyout vhost.dmn.tld.pem

$ �openssl rsa ‑in vhost.dmn.tld.pem ‑out
/etc/ssl/private/vhost.dmn.tld.key

$ �openssl x509 ‑in vhost.dmn.tld.csr ‑out
/etc/ssl/certs/vhost.dmn.tld.crt ‑req ‑signkey \
/etc/ssl/private/vhost.dmn.tld.key ‑days 3650

 Listing 2: Creating a Certificate Manually

01 �SSLCACertificateFile /etc/ssl/certs/intranet‑ca.crt

02 �SSLVerifyClient require

03 �SSLVerifyDepth 5

 Listing 3: Forcing SSL Authentication

6 A D M I N S p ec ia l : T R I C KS w it h SS L and SS H w w w. admin - ma ga z in e .co m

SSL WITH APACHET ri c ks w it h ss l and ss h

http://httpd.apache.org/docs/current/mod/mod_ssl.html
http://httpd.apache.org/docs/current/ssl/ssl_howto.html

D
IG

IT
A

L
&

 P
R

IN
T

SU
B

SC
R

IP
TI

O
N

S
SP

eC
IA

L
eD

IT
IO

N
S

• LPIC-1 LPI 101 - CompTIA Linux+ LX0-101

• LPIC-1 LPI 102 - CompTIA Linux+ LX0-102

• LPIC-1 - CompTIA Linux+ 101 + 102

 T
R

A
IN

IN
G

Shop the Shop shop.linuxnewmedia.com

s h o p . l i n u x n e w m e d i a . c o m

Want to subscribe?

Need training?

Searching for that back issue you really wish you‘d picked up at the newsstand?

Discover the past and invest in a new year of IT
solutions at Linux New Media‘s online store.

LNM_OnlineShop_1-1.indd 1 8/28/12 11:34:04 AM

N
etwork- and host-based intrusion
detection is pretty much a manda-
tory requirement now if you want
to keep your network under con-

trol. Back in the good old days, when your
Internet connection was a dial-up link (for
the entire company), you could just keep
software up to date, install a firewall, and
call it a day.

Since then, things have changed sig-
nificantly. Almost all computers are
now attached to the Internet all the
time. Most of these computers are

behind firewalls and NAT-based
systems – so they can use the In-

ternet, but the Internet can’t ini-
tiate connections to them.

This strategy worked pretty
well until clients started

using prodigious
amounts of data from

the Internet, espe-
cially the World
Wide Web and
email. Now, to
add insult to in-
jury, almost all
web and email

Using a Squid proxy with HTTPS

Squid
in the Middle

How do you monitor the network when your

client systems are connecting to secure web

servers through HTTPS? We’ll show you how to

keep watch using the Squid proxy server and

share some inventive certificate tricks. By Kurt Seifried

M
ark J. G

renier, Fotolia.co
m

8 A D M I N S p ec ia l : T R I C KS w it h SS L and SS H w w w. admin - ma ga z in e .co m

HTTPS ProxyT ri c ks w it h ss l and ss h

clients include JavaScript support and
newer technologies like HTML5 and web
sockets.

To put it simply, implementing all the
best practices in the world cannot guar-
antee that no one will break into your
network. So, from a defender’s point of
view, you need to maintain a close
watch on systems and the network for
anomalous behavior (e.g., sending a
terabyte of data to a country you don’t
have an office in).

Back in the day, tracking web traffic
was trivial. You could just install a proxy
server, block outgoing access (except for
the proxy server), and you were done.
You could see all outgoing requests and
incoming responses; everything was in
cleartext and could be trivially logged,
searched, and stored for later use. But
now, with more and more sensitive in-
formation being accessed and sent
through websites, many sites are deploy-
ing SSL, and some larger sites (notably,
Google properties like Gmail and Red
Hat OpenShift) are defaulting to SSL for
all sites and traffic.

Intercepting SSL and TLS
The good news (or bad, depending on
your perspective) is that HTTPS traffic
can be intercepted transparently by
proxy software such as Squid. This is ac-
complished by executing what is essen-
tially a man-in-the-middle attack. The
proxy system opens an HTTPS connec-
tion with the outside web server and
passes the web data back to the client as
if it were coming directly from the
server. Of course, the client is operating
through HTTPS, and the proxy system
must complete that connection.

The trick to pulling off this setup is to
use a root certificate that is trusted by
the client to sign site certificates, thereby
allowing you to create fake signed certifi-
cates for sites the user is visiting. This
process is possible because client soft-
ware (your web browser, email client,
etc.) trusts all root certificates equally.
When you access a site, such as exam-
ple.org, you currently have no way of
knowing which certificate authority ex-
ample.org used to sign the site certifi-
cate.

To set up an intercepting SSL proxy in-
volves basically two steps. First, you
need to configure a proxy such as Squid,
and second, you need either to get a cer-

tificate that is not restricted from signing
other certificates or to install your own
root certificate on clients for which you
have the private key, which you can then
use to sign fake certificates. This pro-
cess, of course, leads to some ethical and
potential legal issues; I think the Squid
site says it best:

Decrypting HTTPS tunnels without
user consent or knowledge may vio-
late ethical norms and may be illegal
in your jurisdiction. Squid decryption
features described here and elsewhere
are designed for deployment with
user consent or, at the very least, in
environments where decryption with-
out consent is legal. [3]

The good news (again, depending on
your perspective) is that various technol-
ogies and strategies are being created to
solve this exact problem, such as Google
SSL Pinning and Convergence SSL [1].

Configuring Squid to
Proxy SSL
Configuring Squid for transparent SSL
interception is not difficult. However,
most vendor-supplied Squid packages do
not include support for transparent SSL
interception out of the box. This means
you will either need to compile Squid
from source or download a source RPM
or DPKG, modify the configuration, and
recompile it. Note that currently on Fe-
dora, Red Hat Enterprise, and derivatives
like CentOS, the OpenSSL package has
an issue that prevents Squid from being
compiled with SSL interception. Short of
installing a second copy of OpenSSL
from source code and compiling against
that, I was unable to find a good solu-
tion. Basically, when compiling Squid,
you will need to make sure the ‑‑en‑
able‑ssl‑crtd and ‑‑enable‑ssl options
are enabled for SSL interception.

Next, you will need to configure three
main options: dynamic certificate gener-
ation, SSL bumping, and the HTTPS sup-
port for clients (assuming you are not
using transparent interception). For all
three of these configuration setups, I
highly recommend checking the Squid
wiki for the latest information.

Dynamic certificate [2] generation is
required because you will need to create
signed SSL certificates for each site vis-
ited by users. You can do this through

the ssl_crtd program; the main configu-
ration option to keep in mind is the dy‑
namic_cert_mem_cache_size. Setting a
larger cache (I recommend 10-20MB) en-
sures that certificates are not constantly
being regenerated (100 certificates re-
quire approximately 4MB), thereby re-
ducing load times.

The next step is to enable SSL bump-
ing [3]. Squid can easily be configured to
proxy SSL connections using the CONNECT
method. In this mode, it simply passes
packets between the server and the cli-
ent; it does not decrypt or otherwise un-
derstand the traffic being passed back
and forth. To decrypt the data, you will
need to enable SSL bumping, which
mainly consists of adding ssl‑bump to the
http_port and https_port configuration
lines.

Finally, if you’re proxying HTTPS, it
would probably be a good idea to talk to
the proxy using HTTPS [4]; otherwise,
local attackers might be able to view all
the traffic. To enable HTTPS, simply use
https_port instead of http_port. You
should have something like

https_port 3130 ssl‑bump U

 generate‑host‑certificates=on U

 cert=/etc/squid/myCA.pem U

 key=/etc/squid/myCA.key

always_direct allow all

ssl_bump allow all

once you put it all together.

Squid SSL Transparent
Proxy
So, now you have an HTTPS-enabled
proxy that can handle SSL connections
and examine them. However, you proba-
bly want to set this up transparently to
avoid having to change the proxy set-
tings on every single device – especially
mobile devices that are only attached to
your network for a few hours a day (and
attached to other networks like coffee
shops and hotels).

To do this, you can simply add the
“transparent” keyword and define NAT
redirection rules like this,

iptables ‑t nat ‑A PREROUTING ‑i U

 eth0 ‑p tcp ‑dport 80 ‑j DNAT U

 ‑to‑destination 10.1.2.3:3128

iptables ‑t nat ‑A PREROUTING ‑i U

 eth0 ‑p tcp ‑dport 443 ‑j DNAT U

 ‑to‑destination 10.1.2.3:3129

9A D M I N S p ec ia l : T R I C KS w it h SS L and SS Hw w w. admin - ma ga z in e .co m

T ri c ks w it h ss l and ss hHTTPS Proxy

significant one being that users cannot
see the real site certificate, so they can-
not make an informed decision on
whether or not to trust it. Instead, they
must rely on the intercepting proxy to
handle certificates properly. This means
that problems like expired certificates, or
certificates that suddenly change, might
not be detected correctly.

At this time, Squid does not support
SNI (essentially virtual hosting multiple
SSL sites off a single IP address) very
well, which might break a number of
popular sites. Unfortunately, if you do
not monitor SSL-based web traffic, you
will see less and less as more sites
move to the use of HTTPS by default,
leaving no easy answers for this prob-
lem. Additionally, technologies such as
Google SSL pinning will detect such in-
terception and, depending on the con-
figuration, possibly block users from
using the site at all.

Conclusion
Ironically, what’s making network in-
trusion detection more difficult is the
simple fact that we are getting much
better at security and are widely de-
ploying things like SSL encryption.
Tricks like the Squid HTTPS proxy tech-
nique described in this article will help
you maintain a consistent level of over-
sight in the age of secure Internet con-
nections. nnn

so that outgoing traffic to port 443 is sent
to the Squid transparent proxy.

Installing Certificates on
Clients
Recently, a number of certificate authori-
ties have been found selling certificates
that can be used to sign arbitrary sites.
These certificates are used by various
SSL-intercepting proxy devices that can
be purchased commercially. Chances are
you won’t be able to buy one of these
certificates (and if you can, then you can
pretty much perform a man-in-the-mid-
dle attack on any public website); how-
ever, you can generate your own root
certificate and install it on client systems
to accomplish the same thing. Your main
options are to export the public part of
the certificate and manually install it or
to have users manually install it on their
system. You’ll likely have to do this any-
way with mobile devices (see also the
“Hardware and Cell Phones” box).

Your other options are to use com-
mand-line tools to insert the certificate

into the certificate
storage mechanism on
a user’s system or to
modify and create
customized packages
for the system certifi-
cate store. Programs
like Firefox and Thun-
derbird typically use a
central certificate
store in /etc/pki/
nssdb/cert8.db; how-
ever, this is not always

the case.
The programs also keep local certifi-

cate stores in $HOME/.mozilla/firefox/
[random].default/cert8.db and $HOME/.
mozilla/thunderbird/[random].default/
cert8.db, for example. To interact with
these certificate stores, you’ll need the
nss-tools [5] software, which is typically
installed along with programs like Fire-
fox or Thunderbird. The command line
to do this should look like this:

certutil ‑A ‑n "$certname" U

 ‑t "TCu,Cuw,Tuw" U

 ‑i $certfile U

 ‑d $certdir

Google Chrome uses the same format of
NSS files, so adding certificates to it is
the same as above. However, the certifi-
cates could be stored in a different loca-
tion, such as $HOME/.pki/.

Risks of Interception
Of course, you incur some risks when in-
tercepting SSL connections. The most

[1]	� “Who’s on First?” by Kurt Seifried,
Linux Magazine, April 2012, pg. 70:
http://​www.​linuxpromagazine.​com/​
Issues/​2012/​137/​
Security‑Lessons‑Fixing‑SSL/​
(kategorie)/​0

[2]	� Dynamic SSL certificate generation:
http://​wiki.​squid‑cache.​org/​Features/​
DynamicSslCert

[3]	� Squid-in-the-middle SSL Bump:
http://​wiki.​squid‑cache.​org/​Features/​
SslBump

[4]	� HTTPS (HTTP Secure or HTTP over
SSL/​TLS) http://​wiki.​squid‑cache.​org/​
Features/​HTTPS

[5]	� Using the certificate database tool:
http://​www.​mozilla.​org/​projects/​
security/​pki/​nss/​tools/​certutil.​html

[6]	� Raspberry Pi:
http://​www.​raspberrypi.​org/

[7]	� Power Pwn: http://​pwnieexpress.​
com/​products/​power‑pwn

 Info

Figure 1: Power Pwn.

If you haven’t heard about the Raspberry
Pi [6] and similar computers, now would
be a good time to learn about them. Basi-
cally, for US$ 25 to US$ 35, you can get a
fully functioning ARM-based computer
about the size of a credit card with Ether-
net, USB, and HDMI output that runs on
five watts or so. How is this related to in-
trusion detection? Attackers can now build
small cheap computers that either run off
of a battery or are small enough to fit in
other equipment like power bars or UPSs.
You can even buy a device called a “Jack
PC,” which is literally a full computer that
fits into a standard-sized wall jack for less
than US$ 300.

The problem here is that if a shipment of
10 or 20 UPSs shows up at your office,

people will probably plug them in. Then,
an attacker can connect to them remotely
via cell phone or WiFi and attack your
wireless networks. If the attacker ships
an extra Ethernet cable and instructions
to place the UPS inline with the wired
network to prevent surges from frying
the computer, I bet most users would do
so. And, with this, an attacker would be
able to attack your wired network. On
September 30, 2012, the Power Pwn [7]
penetration testing platform is expected
to be commercially available with all
these and other features (Figure 1), so in-
ventorying your equipment and making
sure nothing strange has sneaked in will
become a new standard task for adminis-
trators – unfortunately.

 Hardware and Cell Phones

10 A D M I N S p ec ia l : T R I C KS w it h SS L and SS H w w w. admin - ma ga z in e .co m

HTTPS ProxyT ri c ks w it h ss l and ss h

http://www.linuxpromagazine.com/Issues/2012/137/Security-Lessons-Fixing-SSL/(kategorie)/0
http://www.linuxpromagazine.com/Issues/2012/137/Security-Lessons-Fixing-SSL/(kategorie)/0
http://www.linuxpromagazine.com/Issues/2012/137/Security-Lessons-Fixing-SSL/(kategorie)/0
http://www.linuxpromagazine.com/Issues/2012/137/Security-Lessons-Fixing-SSL/(kategorie)/0
http://wiki.squid-cache.org/Features/DynamicSslCert
http://wiki.squid-cache.org/Features/DynamicSslCert
http://wiki.squid-cache.org/Features/SslBump
http://wiki.squid-cache.org/Features/SslBump
http://wiki.squid-cache.org/Features/HTTPS
http://wiki.squid-cache.org/Features/HTTPS
http://www.mozilla.org/projects/security/pki/nss/tools/certutil.html
http://www.mozilla.org/projects/security/pki/nss/tools/certutil.html
http://www.raspberrypi.org/
http://pwnieexpress.com/products/power-pwn
http://pwnieexpress.com/products/power-pwn

Ft Photography, Fotolia

Need more Linux? Our free Linux Update
newsletter delivers insightful articles
and tech tips to your mailbox twice a
month. You’ll discover:

• Original articles on real-world Linux

• Linux news

• Tips on Bash scripting and other
advanced techniques

• Discounts and special offers available
only to newsletter subscribers

www.linuxpromagazine.com/Subscribe/iframe-Newsletter

LNM_LinuxUpdate_1-1.indd 1 3/20/12 5:19:19 PM

S_client is particularly useful for
checking which protocols and which ci-
phers the server agrees to use. This in-
formation is useful in security and func-
tionality audits. For example, you could
use this protocol information to find
servers that don’t accept a legitimate
protocol or cipher, thus preventing a le-
gitimate client from connecting. You
could also locate servers that accept
weak protocols or ciphers and could
thus allow a malicious attack. With a lit-
tle help from Bash, you can fully auto-
mate this process.

Assume the client and the server host-
names are client and server, and that
the server listens for SSL/​TLS connec-
tions on port 443.

To check which protocols server ac-
cepts, you could use the following pa-
rameters: ‑ssl2, ‑ssl3, ‑tls1, ‑no_ssl2,
‑no_ssl3, or ‑no_tls1.

Because SSL2 is known to have secu-
rity weaknesses, you can attempt to con-
nect to the server using the following
command:

O
penSSL[1] makes use of stan-
dard input and standard output,
and it supports a wide range of
parameters, such as command-

line switches, environment variables,
named pipes, file descriptors, and files.
You can take advantage of these features
to quickly write Bash [2] (Bourne-Again
Shell) scripts that automate tasks, such
as testing SSL/​TLS (Secure Socket Layer/
Transport Layer Security) connections,
bulk conversions between different for-
mats of cryptographic keys and certifi-
cates, batch signing/​encrypting of files,
auditing password protected files, and
implementing or testing a PKI (Public
Key Infrastructure).

The OpenSSL toolkit provides many
modules that each perform a specific

task. Each module is not a separate exe-
cutable, but is, instead, selected with the
first parameter of the openssl executable.
On the other hand, each module has a
separate manual page. For example, a
module named x509 manages X.509 digi-
tal certificates and a module named
pkcs12 manages PKCS12 packages.

To use x509, you should execute the
following command:

openssl x509 ‑param1 param1value

but to see the manual page for it, you
should type: man x509.

Testing SSL/​TLS
connections
OpenSSL provides three modules that
allow you to test SSL connections: s_cli‑
ent, s_server, and s_time. The first two,
as the names suggest, are for simulating
a client and a server in an SSL connec-
tion. The third one is for connection tim-
ing tests. I’ll start with a closer look at
the s_client module.

M
ich

a
l B

o
u

b
in

, 12
3

rf

Using the OpenSSL toolkit with Bash

 Cryptic
Cryptography is an important part of IT security, and OpenSSL is a well-known cryptography

toolkit for Linux. Experts depend on OpenSSL because it is free, it has huge capabilities, and

it’s easy to use in Bash scripts. By Marcin Teodorczyk

Marcin Teodorczyk has been passionate
about computers and Linux for more
than 14 years. He works with grid envi-
ronments as an Information Security Of-
ficer, and in his spare time, he juggles.

 Author

12 A D M I N S p ec ia l : T R I C KS w it h SS L and SS H w w w. admin - ma ga z in e .co m

OpenSSL with BashT ri c ks w it h ss l and ss h

openssl s_client U

 ‑connect server:443 ‑no_ssl3 ‑no_tls1

If the server accepts any protocol other
than SSL3 or TLS1, the preceding com-
mand opens a connection and waits for
data. (Of course, this approach is not
ideal if you plan to embed the command
in a Bash script.) To close the connection
immediately after establishing it, write
to s_client‘s standard input:

echo "x" | openssl s_client U

 ‑connect server:443 ‑no_ssl3 ‑no_tls1

Similarly, you can check allowed ciphers
with the ‑cipher parameter. For user
convenience, OpenSSL allows you to
specify specific cipher suites (e.g.,
DES‑CBC3‑SHA) or groups of ciphers (e.g.,
LOW, MEDIUM, HIGH, NULL, ALL). Find group
names and ciphers with man ciphers.

To check whether the server accepts
connections using ciphers from group
NULL or LOW, use the following:

echo "x" | openssl s_client U

 ‑connect $server:443 ‑cipher NULL,LOW

In Bash scripts, it is a good idea to run
OpenSSL modules with a specified time-
out. Otherwise, when a hostname can’t
be resolved, the script will hang for a
long time. A special Linux utility will let
you run any command with a timeout.
Surprisingly, the utility is called timeout.
For example, to check if an SSL2 connec-
tion can be established, but not wait for
it longer than 10 seconds, use:

echo "x" | timeout 10 openssl U

 s_client ‑connect server:443 ‑ssl2

Finally, to make the command more au-
tomatic, you can use the $? variable to

check the return code of the last com-
mand executed by BASH. If the connec-
tion is established, OpenSSL returns 0.

Listing 1 shows a simple example
script with everything I have done so far.
The script reads hostnames from stan-
dard input and checks if a connection
other than SSL3 or TLS1 can be estab-
lished on port 443. It waits no more than
three seconds. Names of hosts that allow
such connections are written to the file
bad_protocol.txt. Similarly, the hosts
that allow connections with NULL or
LOW ciphers are listed in bad_cipher.txt.

Handling PEM/​DER and
PKCS12 Formats
A few formats and containers are used
for public cryptography keypairs and
digital certificates. Without getting into
details, the most common formats for
my network are PEM, DER, PKCS12, or
JKS. From these, only the JKS format is
not supported by the OpenSSL software.
PEM and DER are encoding formats –
PEM is a Base64-encoded format. DER is
binary. PKCS12 is a container that can
hold private and public keys, as well as
signed certificates and certificates
chains.

To convert between the PEM and DER
file formats, you can use the -inform and
-outform parameters. For example, to
convert all X.509 certificates from PEM
to DER, you can use the following loop:

for file in *.pem;

do openssl x509 ‑inform PEM U

 ‑in $file ‑outform DER ‑out $file.der;

done

Another common task is extracting keys/​
certificates from a PKCS12 package,
which is usually protected with a pass-
word. I can handle such an operation

with the Bash and OpenSSL option
‑passin. This option allows me to specify
passwords to access data in password-
protected files in five ways. It is useful
not only for PKCS12, but for every action
that requires a password, for example,
encrypted private keys or data.

First, I can specify a password as a
pass:password_text, in which case pass‑
word_text is the actual password. This is
not a secure method, because the pass-
word is stored in Bash history and can
be spotted with a ps command during
execution. Second, I can specify the
password with env:var. This method is
more secure, because the password is
held in the environment variable var.
Another approach is to store the pass-
word as a file:pathname, which instructs
OpenSSL to read the password from the
first line of the file pathname. Or, I could
use fd:number, which makes OpenSSL
read the password from the file descrip-
tor number. Finally, I can simply use stdin
to read passwords from standard input.

Next, I’ll extract all certificates from
password-protected PKCS12 files in a
working directory and store them with-
out password protection. This can be
done with the following:

for file in *.p12; do

 openssl pkcs12 ‑in $file U

 ‑passin file:$file.pass U

 ‑nokeys ‑nodes ‑out $file.nokeys

done

I will assume I have a password for each
PKCS12 file written in a file with the
.pass extension.

Bulk Encrypting and
Decrypting
Common cryptography tasks include en-
crypting and decrypting files. Symmetric
cryptography uses one key for encrypt-
ing and decrypting. Asymmetric cryptog-
raphy uses a public key for encrypting
and a private key for decrypting (typi-
cally implemented with PKI and X.509
certificates).

Symmetric cryptography is faster than
asymmetric cryptography, and it is a bet-
ter choice when there is no need to pro-
vide public access to the key.

To encrypt the plain.txt file with sym-
metric cryptography and write the out-
put cipher.enc, I can use the following
command:

01 �#!/bin/bash

02 �while read server ; do

03 � timeout 3 openssl s_client ‑connect $server:443 ‑no_ssl3 ‑no_tls1

04 � if [$? ‑eq 0] ; then

05 � echo $server >> bad_protocol.txt

06 � fi

07 � timeout 3 openssl s_client ‑connect $server:443 ‑cipher NULL,LOW

08 � if [$? ‑eq 0] ; then

09 � echo $server >> bad_cipher.txt

10 � fi

11 �done

 Listing 1: Checking Permitted Protocols

13A D M I N S p ec ia l : T R I C KS w it h SS L and SS Hw w w. admin - ma ga z in e .co m

T ri c ks w it h ss l and ss hOpenSSL with Bash

again assuming that I have a password
in the pass file.

OpenSSL and Standard
Input/​Output
Keeping with Unix philosophy, every ar-
gument that is passed with the ‑in pa-
rameter can be passed also using stan-
dard input. If I don’t specify the output
with the ‑out parameter, it is written to
standard output. Hence, I can use
OpenSSL for processing outputs of other
commands and generating inputs for
other programs with a pipe. To check
whether a certificate with the serial

openssl [ciphername] ‑a ‑salt U

 ‑in plain.txt ‑out cipher.enc

The system will prompt for an encryp-
tion password, which also has to be
typed when decrypting later. It is not the
best option for bulk operations, but I
have already described several methods
for specifying a password to OpenSSL.

Thus, to encrypt all .txt files in the
current directory and write them to the
../enc directory with the aes‑256‑cbc ci-
pher, I can use the following loop (as-
suming the password is written in the
pass file):

for file in *.txt; do

 openssl aes‑256‑cbc ‑a ‑salt U

 ‑in "$file" ‑out "../enc/$file" U

 ‑passin file:pass

done

I can decrypt all .txt files in the current
directory and write them to the ../dec
directory with:

for file in *.txt; do

 openssl aes‑256‑cbc ‑d ‑a ‑salt U

 ‑in "$file" ‑out "../dec/$file" U

 ‑passin file:pass

done

01 �function create_config {

02 � {

03 � echo "HOME = ."

04 � echo "RANDFILE = $ENV::HOME/.rnd"

05 �

06 � ...

07 � cut for better readability

08 � ...

09 �

10 � echo "oid_section = new_oids"

11 � echo 'subjectKeyIdentifier=hash'

12 � echo 'authorityKeyIdentifier=keyid,issuer'

13 � echo '�proxyCertInfo=critical,language:
id‑ppl‑anyLanguage,pathlen:3,policy:foo'

14 � } > "$config"

15 �}

16 �

17 �function create_root_ca {

18 � local keysize=$1

19 � local country=$2

20 � local org=$3

21 � local name=$4

22 � local days=$5

23 � local certfile=$6

24 � local keyfile=$7

25 � openssl req �‑newkey rsa:$keysize ‑x509
‑days $days ‑keyout $keyfile ‑nodes
‑out $certfile ‑config $config
‑subj /C=$country/O=$org/CN=$name

26 � return $?

27 �}

28 �

29 �function create_crl {

30 � local cakey=$1

31 � local cacert=$2

32 � local crlfile=$3

33 � openssl ca �‑gencrl ‑config $config ‑keyfile $cakey
‑cert $cacert ‑out $crlfile

34 �}

35 �

36 �function create_client_req {

37 � local keysize=$1

38 � local country=$2

39 � local org=$3

40 � local name=$4

41 � local keyfile=$5

42 � local reqfile=$6

43 � openssl req �‑new ‑newkey rsa:$keysize ‑nodes
‑keyout $keyfile ‑out $reqfile
‑config $config
‑subj /C=$country/O=$org/CN=$name

44 �}

45 �

46 �function sign_client_req {

47 � local clientreq=$1

48 � local days=$2

49 � local cacert=$3

50 � local cakey=$4

51 � local clientcert=$5

52 � openssl x509 �‑req ‑days $days ‑CA $cacert
‑CAkey $cakey ‑CAcreateserial
‑in $clientreq ‑out $clientcert

53 �}

54 �

55 �function revoke_client_cert {

56 � local clientcert=$1

57 � local cakey=$2

58 � local cacert=$3

59 � openssl ca �‑revoke $clientcert ‑keyfile $cakey
‑cert $cacert ‑config $config

60 �}

61 �

62 �function get_cacountry {

63 � cacountry="DC"

64 �}

65 �

66 �function get_caorg {

67 � caorg="Dummy org"

68 �}

69 �

70 �function get_caname {

71 � caname="Dummy CA"

72 �}

 Listing 2: Testing a PKI

14 A D M I N S p ec ia l : T R I C KS w it h SS L and SS H w w w. admin - ma ga z in e .co m

OpenSSL with BashT ri c ks w it h ss l and ss h

number 44A2FC741D8C1755 has been re-
voked, I can use the following com-
mand:

curl ‑s http://localhost/crl.pem | U

 openssl crl ‑text ‑noout | grep U

 "Serial Number: 44A2FC741D8C1755"

This command will retrieve a CRL (Cer-
tificate Revocation List) and decode it
with OpenSSL. Next, it will grep for a se-
rial number. Similarly, as with the previ-
ous Bash scripts, I can add a timeout and
check the output of the grep command
with the $? variable.

Auditing Encryption
Passwords
A private key should almost always be
secured with a password. Often, PKCS12
files are secured with passwords, too.
With OpenSSL and Bash, I can do a
quick check of the passwords used to
protect those files. Assume I have a text
file with the most common passwords,
one in a line, called passwords.txt. I can
check each password-protected file in
the current directory with:

while read pass; do

 for file in *.p12; do

 openssl pkcs12 ‑in $file U

 ‑noout ‑passin pass:$pass U

 2>/dev/null

 if [$? ‑eq 0] ; then

 echo "Guessed password U

 for $file: $pass"

 fi

done

done < passwords.txt

using each password from the passwords.
txt file.

Testing PKI
The last major capability of OpenSSL is
implementing a Public Key Infrastructure
(PKI). A PKI often has a crucial role in
security, and OpenSSL can be used to
implement and test a PKI.

First, I can use OpenSSL to generate
key pairs and corresponding CSRs (Cer-
tificate Signing Request). Second, I can
sign CSRs, thus creating a valid certifi-
cates. Third, I can revoke and generate
CRLs. Fourth, I can sign/​encrypt and
verify/​decrypt. Finally, I can change pa-
rameters on the fly, manipulating values
such as algorithms, key lengths, or DN

content. I can then use this data as input
for other applications.

Listing 2 shows a few example func-
tions I can use for testing various ele-
ments of a PKI. The create_config func-
tion has been cut for better readability.
You can use the contents of your default
OpenSSL configuration file for additional
configuration settings. The configuration
file is usually called openssl.cnf and
placed in /etc.

By default, OpenSSL reads its configu-
ration file from a specified location (usu-
ally /etc/openssl.cnf), but for my pur-
poses, it is easier to create a config file
on the fly. The script function create_
config takes care of this by writing the
configuration to the ./config file. Later,
the file created by this function is
pointed to OpenSSL with the ‑config pa-
rameter.

Next I have functions create_root_ca,
create_crl, create_client_req, sign_cli‑
ent_req, and revoke_client_cert, the
names of which are self-explanatory. All
of these functions take parameters that
specify things such as a DN (Distin-
guished Name) string, valid period, key-
size, etc.

The main part of the script (not shown
in the listing) could use the functions to
generate a specified number of CA’s
(Certification Authority) certificates and
a specified number of client’s certificates
for each CA. Also, I could revoke some
client’s certificates right after generating.
Thus the output of the script would be a
bunch of CA certificates, revoked client
certificates, and CRLs.

Summary
OpenSSL is a very flexible tool. Because
you can specify all the necessary param-
eters using command-line switches, files,
pipes, and environment variables, it is
perfectly suited for Bash scripts.

This article described a few uses for
OpenSSL, but bear in mind that this is
only the tip of an iceberg. I encourage
you to glance through the manual and
experiment with your own ideas. Just
don’t confuse somebody else’s private
key with your own. nnn

[1]	� OpenSSL: http://​www.​openssl.​org/

[2]	� Bash:
http://​www.​gnu.​org/​software/​bash/

 Info

available at
your newsstand!

300+ of the best
basH Commands!

n Create your own
Bash Scripts

n Configure partitions,
permissions, devices,
and user accounts

n Manage and
troubleshoot
processes

Or Order Online at:
shOp.linuxnewmedia.cOm

(select special editiOns)

3rd edition

New and improved!

LNM_special_Shellhandbook_1-3v.indd 1 7/16/12 12:42:35 PM

w w w. admin - ma ga z in e .co m

http://www.openssl.org/
http://www.gnu.org/software/bash/

plained in detail in the man pages. Users
don’t typically need to make any major
changes. The defaults used by openSUSE
11.0 are user friendly but still secure
enough not to make additional configu-
ration worthwhile.

How It Works
The SSH client/​server architecture is
based on TCP/​IP. The SSH server (sshd)
runs on one machine, where it listens for
incoming connections on TCP port 22.
The client simply uses this port to con-
nect to the server. When a connection is
established, quite a few things happen in
the background. First, the server and cli-
ent negotiate the SSH protocol version to
use for the communications. Currently,
SSH 1 and SSH 2 are available, but SSH 2
is standard today because of its better
security. Details – including details of
encryption – are given in the “SSH Pro-
tocol Versions” box.

Second, the server and client negotiate
the algorithm, followed by the key that

T
elnet is probably the best known
solution for providing users with
console access to remote ma-
chines. However convenient this

dinosaur of network communication
might be, it has one major disadvantage:
All the data are sent in plaintext over the
wire. If an attacker sniffs the connection,
he or she will quickly learn the adminis-
trative password for the server. Admit-

tedly, it probably isn’t quite that easy,
but the danger is there all the same. For
this reason, all popular Linux distribu-
tions install the Secure Shell (SSH) as a
safer alternative.

SSH’s configuration files are located in
/etc/ssh, where you will find one file for
the server (sshd_config) and another for
the client (ssh_config). The files contain
a huge number of options, which are ex-

M
iroslaw

 H
ejn

icki, 12
3

rf.co
m

Secure connections with SSH

Tunnel Builder
Whether you need an encrypted tunnel between multiple PCs or graphical applications over

a LAN, the all-purpose SSH tool leaves little to be desired. By Joerg Harmuth

SSH1 and SSH2 are the current versions.
SSH1 uses the insecure DES or the secure
Triple DES (3DES). The Blowfish algorithm
provides a fast and – so far – secure en-
cryption technology. Version 2 includes
the AES algorithm and others.

Vulnerabilities in the SSH1 protocol make
it possible to hack the encryption. Version
1 relies on encryption of data with a ran-
dom number that has been encrypted with
the server’s public key. This method is
open to brute force attacks that give the at-
tacker the plaintext key.

Protocol 2 relies on a Diffie-Hellman ex-
change that never transmits the key over
the wire but allow server and client to gen-
erate the same key independently.

Other enhancements to version 2 include
the software’s ability to check the data in-
tegrity with cryptographic hashes (the
Message Authentication Code method)
rather than the unreliable CRC (Cyclic Re-
dundancy Check) method. Support for
multiplexing is also improved. All of the
examples in this article use SSH2, al-
though some will work with SSH1.

 SSH Protocol Versions

16 A D M I N S p ec ia l : T R I C KS w it h SS L and SS H w w w. admin - ma ga z in e .co m

Getting Started with SSHT ri c ks w it h ss l and ss h

both will use for the data transfer. The
key is used once only for the current
communication session, and both ends
destroy it when the connection is bro-
ken. For extended sessions, the key will
change at regular intervals with one
hour being the default.

Initial Login
The easiest approach is to log in using
the classic username/​password method.
The SSH client will automatically use
your username as the login name on the
remote machine. The first time, the cli-
ent will not know the server’s host key
and will prompt you to confirm that you
really do want to set up a connection
with the remote machine. The program
waits for you to confirm before generat-
ing the fingerprint (Figure 1). To check
the key fingerprint, contact the adminis-
trator of the remote machine. This pre-
vents man-in-the-middle attacks, in
which an attacker reroutes network traf-
fic to his own machine while spoofing a
genuine login to your machine.

If you confirm the security prompt
and enter your password in such a case,
the attacker will then own your pass-
word; thus, some caution is recom-
mended. If the host key changes, the
client will refuse to connect when you
log in later. Figure 2 shows the output
from the SSH client.

The only thing that will help here is to
remove the offending fingerprint from
your $HOME/.ssh./known_hosts file and
then accept the new key after contacting
the administrator on the remote ma-
chine. To configure this behavior, use the
StrictHostKeyChecking variable in ssh_
config.

If you do not want to use your current
account name to log in to the remote ma-
chine but have a different account name,
the ‑l login_name option can help you.
For example, the command ssh ‑l tuppes
sector will log you into the remote ma-
chine as the user tuppes. SSH also accepts
the following syntax: ssh tuppes@sector.

To run a single
command on the
remote machine, you simply append it to
the command line (Listing 1).

If you get tired of typing your pass-
word, public key authentication provides
an alternative. This technique uses en-
cryption methods such as those used by
GnuPG. Before you can use the public
key approach, you first need to run
ssh‑keygen to generate a pair of keys

ssh‑keygen ‑b 1024 ‑t rsa

The software will tell you that it has cre-
ated a keypair with a public key and a
private key on the basis of the RSA ap-
proach. When prompted to enter a pass-
word, press Enter twice. The program
will then tell you where it has stored the
data and will display the fingerprint for
the new key.

In the example here, the software gen-
erated an RSA keypair (‑t rsa) with a
length of 1024 bits (‑b 1024). An RSA key
is fine for use with both protocol ver-
sions. For security reasons, the key
length should not be less than 1024 bits.
To be absolutely safe, you can use a key
length of 2048 bits: 2048-bit keys are re-
garded as safe until the year 2020 based
on the current state of the art. The key
length has no influence on the data
transfer speed be-
cause the program
does not use this
key to encrypt the
data.

The next step is
to copy the public
key to the $HOME/.

ssh/authorized_keys file on the remote
machine from, for example, a floppy disk:

mount /media/floppy

cat /media/floppy/id.rsa.pub >> U

 $HOME/.ssh/authorized_keys

umount /media/floppy

Certainly you should avoid transferring
the key by an insecure method, such as
email or FTP. Figure 3 shows the fairly
unspectacular login with the new key.

Passwords protect keys for interactive
sessions; otherwise, anybody with physi-
cal access to your computer could use
your keys to log in to the remote ma-
chine. Key-based, password-free logins
are often used to automate copying of
files to remote machines. For example, if
you back up your data every evening
and want to copy your data automati-
cally to a remote machine, keys without
passwords are a useful approach. If the
key was password protected, you would
need to enter the password for the SSH
key to copy the data – so much for auto-
mated copying.

Useful Freebies
The SSH package includes two more use-
ful programs: Secure Copy (scp) and Se-

Figure 1: On initial login, SSH imports the host key from the remote

machine.

Figure 3: Public key authentication makes the login more user

friendly by removing the password prompt.

Figure 2: If the host key changes, the SSH client will refuse to connect.

01 �jha@scotti:~$ ssh sector "ls ‑l"

02 �Password:

03 �insgesamt 52

04 �Drwxr‑xr‑x 3 tuppes users 4096 2005‑08‑26 12:38 .

05 �Drwxr‑xr‑x 16 root root 4096 2005‑09‑07 13:47 ..

06 �‑rw‑rw‑r‑‑ 1 tuppes users 266 2005‑04‑12 12:00 .alias

 Listing 1: Running Commands on the Remote Machine

17A D M I N S p ec ia l : T R I C KS w it h SS L and SS Hw w w. admin - ma ga z in e .co m

T ri c ks w it h ss l and ss hGetting Started with SSH

The command uses the ‑L option to
open a tunnel from local port 23 on the
local machine (the first 23) to port 23 on
the remote machine. The fast Blowfish
method is used for encryption. If you
type two remote machine names, you
can take advantage of another SSH fea-
ture: the ability to open a tunnel from
the first machine, via the second, to a
third. The command

ssh ‑L 23:192.168.1.1:23 192.168.20.5

starts the tunnel on the local machine,
and routes it by way of an intermediate
station (192.168.1.1) to its endpoint. The
generic syntax for opening a tunnel from
the local machine to the remote com-
puter is thus: ssh ‑L LocalPort:Remote‑Co
mputerA:RemotePort RemoteComputerB. For
a direct tunnel, the two host designa-
tions are identical.

Tunnel Tricks
In Figure 4, the netstat command dem-
onstrates that I really have set up a telnet
connection via SSH. The first netstat
command tells me that an SSH process
with a process ID of 3311 is listening on
port 23. The second command shows
that a connection to port 22 with pre-
cisely this PID (3311) exists.

If you were to look more closely at
the syntax used to open a tunnel, you
might be led to assume that the local
and remote ports do not need to be
identical – and this is true. Assuming
the remote machine is running a proxy
configured for transparent proxying on
port 3128, you could redirect all HTTP
requests:

ssh ‑o GatewayPorts=yes U

 ‑L 80:RemoteComputer:U

 3128 RemoteComputer

This process of redirecting one port to
another is known as port forwarding. For
other computers on the network to use
the tunnel, use of the ‑o
GatewayPorts=yes parameter is required.

In a similar fashion, tunneling works
in the reverse direction. The following
syntax allows you to set up a return tun-
nel from the remote machine to your
local computer:

ssh ‑R RemotePort:LocalComputer:U

 LocalPort RemoteComputer

cure FTP (sftp). As the names suggest,
these programs are used to copy and
transfer files by FTP via SSH. The basic
syntax for the two programs is similar.

For example, the following command
copies a file named test.txt from your
home directory on the remote machine
to your current working directory:

scp RemoteComputer:test.txt .

Depending on your authentication
method, you might need to enter your
password to do this; however, the colon
is mandatory in all cases. It separates the
name of the remote machine from the
pathname. Also, you need to specify the
local path. The easiest case is your cur-
rent working directory, which is repre-
sented by the dot at the end of the line.
To copy multiple files, just type a blank-
delimited list of the file names:

scp RemoteComputerA:test1.txt U

 RemoteComputerB:test2.txt .

If you use the standard login approach,
the client will prompt you to enter your
password for each file you copy. If you
use the public key method discussed
previously, there is no need to type a
password. The command scp Re‑
mote‑ComputerA:test.txt RemoteComput‑
erB: copies the file from remote com-
puter A to remote computer B. To copy a
file as the user tuppes from /home/tup‑
pes/files to your local directory, type:

scp tuppes@RemoteComputer:U

 files/test.txt .

Unlike SSH, you do not specify the ‑l
username option here. If you are copying
in the other direction – from local to re-
mote – the procedure is just as easy:

scp ./test.txt U

 tuppes@RemoteComputer:/files/

scp copies the test.txt file from your
current working directory to /home/tup‑
pes/files on the remote machine.

Again, watch out for the closing colon.
Sftp uses the same command structure
as scp but has two operating modes: in-
teractive, like the one you might be fa-
miliar with from FTP, and a batch
mode. To use sftp to retrieve the sample
file from the remote machine in batch
mode, type:

sftp RemoteComputer:test.txt .

If you add remote_test.txt to the end,
the program will give that name the
local copy of the file. Typing sftp Re‑
moteComputer opens an interactive, en-
crypted FTP session on the remote ma-
chine, and the server will accept FTP
commands such as GET or PUT in the ses-
sion.

Building Tunnels
SSH also lets you encapsulate other pro-
tocols. For example, you can run the tel-
net protocol over an encrypted SSH con-
nection and do it transparently for users.
The technical term for encapsulating one
protocol inside another is tunneling.

The standard specifies that programs
must be running on the same machine to
use the tunnel. If you want to let other
machines on the network use the tunnel,
you must specify ‑o GatewayPorts=yes
when setting up the tunnel. The alterna-
tive approach is to set the option in the
ssh_config configuration file.

This setup is similar to a VPN (Virtual
Private Network) connection but is eas-
ier to implement. The SSH variant has
the disadvantage that you can only for-
ward a single TCP port. Thus, you need
an SSH tunnel for each port you want to
forward. If you want to encrypt all com-
munications between two machines, a
VPN is probably a better choice.

Any user can set up a tunnel, although
tunnels for privileged ports (i.e., below
1024) are reserved for root. To open a
tunnel to a remote machine encapsulat-
ing the telnet protocol (port 23), enter:

ssh ‑c blowfish ‑L 23:RemoteBox:23 U

 RemoteBox

Figure 4: The netstat program showing an existing SSH tunnel.

18 A D M I N S p ec ia l : T R I C KS w it h SS L and SS H w w w. admin - ma ga z in e .co m

Getting Started with SSHT ri c ks w it h ss l and ss h

In my proxy example, this would be:

ssh ‑o GatewayPorts=yes U

 ‑R 3128:LocalComputer:80 U

 RemoteComputer

Graphical Tunnels
The X Window System is natively net-
work-capable, but almost nobody uses
this ability because communications are
again unencrypted over the wire. Tun-
neling with SSH makes this a far more
attractive proposal.

To tunnel X11, the SSH daemon (sshd)

emulates an X server and occupies a
display (number 11 by default). When
you log in to the server, the server sets
the DISPLAY environmental variable to
this value, or to localhost:11.0 to be
more precise. The idea is to avoid colli-
sions with the X server running locally.
Information sent by a computer to this
display is encrypted and sent to your
machine.

OpenSUSE 11.0 enables X11 forward-
ing (the technical term for the process I
just described) by default. If needed, you
can disable X11 forwarding on the ma-

chine configured for forwarding by set-
ting the X11Forwarding variable to no in
etc/ssh/sshd_config. The X11DisplayOff‑
set variable with a default value of 10
defines the distance between the virtual
display and the physical display; you
should keep the default here.

If the machine on which you want to
display tunneled X11 is an openSUSE
11.0 machine, the etc/ssh/ssh_config file
will already have the ForwardX11Trusted
variable set to yes. This completes the
configuration work.

Next, log in to the remote machine
and launch, for example, the Xclock pro-
gram. Figure 5 shows the display (local-
host:11.0), the process, and the matching
network connections.

Conclusions
The SSH package includes a collection of
important programs that make working
on networks far more secure. The fea-
ture scope covers anything from basic
encrypted connections, through tunnel-
ing and port forwarding, to X11 forward-
ing, leaving very little to be desired in
daily use. nnn

REAL SOLUTIONS FOR
REAL NETWORKS

ADMIN magazine covers
Windows, Linux, Solaris, and popular
varieties of the Unix platform.

Learn the latest techniques for
better network security, system
management, troubleshooting,
performance tuning, virtualization,
cloud computing, and much more!

Each issue delivers technical
solutions to the real-world

problems you face every day.

Free
CD or DVD
in every Issue!

Order Online at: shop.linuxnewmedia.com
now 6 issues per year!

LNM_Admin_sub_1-2hz.indd 1 8/1/12 12:26:58 PM

Figure 5: A forwarded X11 connection – the Xclock is running on a remote machine.

T ri c ks w it h ss l and ss hGetting Started with SSH

related pair of values called a key pair. In
SSH, this key pair is usually stored in
text files on your computer. The values
that comprise this key pair are so closely
related that one part of the pair can be
used to encrypt information, and the
other half is used to decrypt that infor-
mation. What one half encrypts, the
other decrypts.

One part of this key pair is kept com-
pletely secret, and this part is called the
private key. You don’t show or give the
private key to anyone, and you enact per-
missions on the private key to make sure
that no one gets hold of it. The other half,
called the “public key,” is shared. You can
send it to your friends or even to your en-
emies. It doesn’t matter.

As I’ll describe shortly, you can config-
ure SSH to stop using common pass-
words and use a key pair to authenticate
connections. That means the only data
that travels across the network during
the authentication sequence is freely
available information regarding the pub-

W
hen preparing for this arti-
cle, I decided to do a bit of
research to discover what
most Linux users knew

about security. I won’t give the usual
sardonic answer of “not much.” Actu-
ally, I found that end users actually
know quite a bit about security. I was
pretty impressed.

Nevertheless, in the official Ubuntu
Security forum [1], I found that the most
common security problem facing Linux
users involves attackers stealing user-
names and passwords from default im-
plementations of Secure Shell (SSH) and
Virtual Network Computing (VNC) serv-
ers. This article describes how to use
VNC with SSH for secure remote desktop
operations. I will use Ubuntu Linux in
these examples, but the tools described
in this article also run on other flavors of
Linux. For that matter, versions of VNC
and SSH are also available for Windows
and Mac OS, so these concepts will work
for other systems as well.

Even though SSH [2] and VNC [3] are
really cool ways to remotely control
computers, neither of these tools uses
the most secure protocols and proce-
dures by default. For example, SSH de-
faults to using traditional usernames and
passwords during authentication. The

result of this default behavior is that,
even though SSH encrypts all network
transmissions via a very powerful en-
cryption algorithm, such as RSA, DSA
and AES, passwords are still passing
across untrusted networks.

The goal is never to have any pass-
word transmitted over a network. And I
mean never. When it comes to VNC, the
encryption used is quite weak and can
be broken quite easily. One way to fix
that problem is to “tunnel” VNC traffic
inside of a secure SSH connection, as
shown in Figure 1.

In Figure 1, host A and host B are
sending VNC traffic via an encrypted
SSH tunnel. I’ll next take a look at how
you can secure SSH and VNC transmis-
sions by using public key encryption and
a bit of tunneling.

Public Key Encryption and
Tunneling
You really don’t need to know all the de-
tails of encryption algorithms to under-
stand how to secure
SSH, but a bit of an
explanation is cer-
tainly useful.

Public key encryp-
tion involves the use
of a mathematically

p
n

p
h

oto, 12
3

R
F.co

m

Key-based authentication with SSH and VNC

Crack Proof

Learn how you can tunnel VNC remote control through an SSH connection. By James Stanger

Figure 1: Tunneling SSH traffic.

20 A D M I N S p ec ia l : T R I C KS w it h SS L and SS H w w w. admin - ma ga z in e .co m

SSH and VNCT ri c ks w it h ss l and ss h

lic key; nothing secret is ever transmit-
ted. Thus, you can use SSH to authenti-
cate users without having any passwords
cross the network. So, you now know
enough of the theory about key pairs
and SSH to get things going.

But what about VNC and tunneling?
Once you configure SSH to use public
key encryption, you can use SSH to cre-
ate an encrypted, secure tunnel between
two computers. To begin, you establish
an SSH connection from Computer A to
Computer B. You can place all sorts of
protocols inside of this tunnel – kind of
like a poor man’s Virtual Private Net-
working (VPN) connection. All you have
to do is tell the VNC application to use
the SSH tunnel you’ve created.

Next, I’ll look at how you can enhance
a default SSH implementation by config-
uring it to use public key authentication,
and then I’ll show how to tunnel VNC
through an SSH connection. You can
think of this article as showing you how
to go public with SSH and then go un-
derground by tunneling VNC.

Public Key-Based
Authentication in SSH
Before I delve into the details of enabling
key-based authentication, I’ll explain the
big picture. To properly secure SSH, you’ll
need to take the following basic steps:
1.	Generating a key pair: Remember, SSH

encrypts traffic by default. So, you can
still authenticate strongly without hav-
ing your passwords pass across the
network.

2.	Exchanging public keys.
3.	Configuring SSH to use the keys you

have generated.
4.	Disable password-based authentica-

tion.

Generating a Key Pair
You generate a key pair using the appli-
cation named ssh-keygen. Figure 2 dem-
onstrates the typical sequence when cre-
ating a key pair. By the way, the se-
quence shown in Figure 2 will create a
2048-bit key pair. That’s pretty strong.
But, if you want to create a key pair
using a stronger bit setting, you can try
the following command:

ssh‑keygen ‑t rsa ‑b 4096

The preceding command creates a 4096-
bit key, which is much more difficult to

crack. Still, I think that’s a bit of overkill
for most implementations. (Larger keys
need more processing time.)

Regardless of the bit size you want,
the sequence of events, once you run the
ssh‑keygen command, is as follows:
1.	The ssh‑keygen command creates a di-

rectory to store the key pair. This direc-
tory is usually off your home directory.
If your login is “james,” then the direc-
tory defaults to storing the directory in
the /home/james/.ssh/ directory. You
can specify any directory you want
without causing problems in the future.

2.	You must enter a passphrase to protect
the key. I usually take the advice of se-
curity experts who say don’t use a
password. If you password-protect
your key, you will always have to
enter that password when using your
public key. Remember, you’ll often be
using SSH across an untrusted net-
work. If you have to enter a password
to a key during an SSH session when
you’re connecting via an untrusted
network, then you’re defeating the
purpose of never having passwords –
not even encrypted ones – travel
across the network.
Remember, that’s why
you’re generating a
key pair in the first
place.

3.	By default, ssh‑keygen
will then create the key
pair using the RSA al-
gorithm. You can spec-
ify DSA if you wish. I
find RSA is the best to
use, because it is the
industry standard.

4.	If you’re using
OpenSSH version 5.1
or later, ssh‑keygen

will then create the “randomart” vi-
sual host key, which is a unique pic-
ture in ASCII art form. The visual host
key is an actual picture based on your
newly generated public key.

The creators of OpenSSH created visual
host keys because they thought it would
be easier for individuals to recognize the
public keys of systems pictorially, rather
than by reading arcane words and letters
such as 23:00:21:33:d4:0f:95:f1:eb:34:b2:
57:cf:3f:2c:e7. The idea is that if you reg-
ularly log into a system and see that the
visual host key has changed, you will
know that a problem exists.

If you open a terminal and change to
the ~/.ssh/ directory, you’ll see that this
directory now lists the following files:
•	 id_rsa: Your private key. It is impera-

tive that you keep this key as private
as possible. Make sure that this key is
always stored in a directory with re-
stricted permissions. If this key is re-
vealed, then anyone who obtains this
key and understands SSH (e.g., any-
one who reads this article) will be able
to access your system and compromise
its security.

Figure 2: Using ssh-keygen.

SSH is a client-server protocol used to
control systems remotely. It is a com-
mand-line tool; you use the ssh command
in a plain old – but powerful – terminal.
SSH was created as a replacement for
old, unencrypted tools such as telnet,
rhost, and rlogin. VNC is a client-server
protocol that allows you to see and share
an entire desktop. It is a rich, graphics-
based tool that allows you to see the
desktop of a remote computer as if it
were that of the computer sitting right in
front of you.

Both of these tools are great ways to get
around; SSH lets you control a remote sys-
tem via a low-bandwidth, powerful com-
mand line-based terminal. VNC allows you
to control a remote system via a sophisti-
cated GUI. Both have their uses; SSH is ter-
rific for getting in and out of a system and
executing complex terminal-based com-
mands. VNC is perfect for manipulating a
graphical environment. However, VNC
doesn’t use strong encryption. Also, be-
cause it supports a graphical environment,
VNC requires more bandwidth than the ter-
minal-based SSH environment.

 SSH and VNC Overview

21A D M I N S p ec ia l : T R I C KS w it h SS L and SS Hw w w. admin - ma ga z in e .co m

T ri c ks w it h ss l and ss hSSH and VNC

Once you’ve taken these steps either
manually or using the ssh‑copy‑id com-
mand, repeat the processes of creating
and exchanging keys with a second host.
It is very important that you place your
public keys into the ~/.ssh/ directory of
the target system. This is because you
will be editing the ~/.ssh/known_hosts
file so that it contains a reference to the
key you just placed onto the new sys-
tem. Congratulations! You now have es-
tablished what the security industry calls
a “trust relationship” between two sys-
tems. You can now securely connect to
that second remote system, because now
you’re still authenticating, but with pub-
lic keys, rather than passwords (see the
“Your Choice” box).

Disabling Password-Based
Authentication
If you really want to go the extra mile,
you can disable password-based authen-
tication in SSH altogether. This step is a
good idea if you’ve already enabled key-
based authentication. To disable pass-
word-based authentication, take the fol-
lowing steps:
1.	As root, open the /etc/ssd_config file.
2.	Find the following command and un-

comment it: PasswordAuthentication
no. If you can’t find this passage, enter
it in a new line, exactly as written.

3.	Restart the SSH daemon as root with
the following:

$ sudo /etc/init.d/ssh restart

Now, you will only be able to use public
key encryption to authenticate.

Updating your SSH Server
Here’s a quick story to remind you to
keep your SSH software updated: I once
set up a system with strong keys, dis-
abled password-based authentication,
and made sure my computer didn’t
allow root-based logins via any means
other than logging in physically, yet I
still got hacked. Why? Because I un-
wisely ignored several security bulletins
telling me that my SSH server version
was out of date. So, be sure to use Ubun-
tu’s update feature to keep your system
current. You’ll be glad you did.

Tunneling VNC
So, you’ve successfully set up your SSH
server so that you can use public key en-

•	 id_rsa.pub: Your public key. You
should re-name this key to something
less generic, such as yourname_
yourhost.rsa, where yourname and
yourhost represent your login name
and host name. That way, everyone
will always know who this key be-
longs to.

•	 authorized_keys: This file will contain
the public keys of other users. Any key
placed into this file will make it so that
this user can log on to your system
without using a username and a pass-
word.

•	 known_hosts: This file contains the list
of host keys that your local SSH server
has exchanged keys with.

The ~/.ssh/ directory may also contain a
file named config. This file can contain
user-specific settings that aren’t particu-
larly relevant to this article.

Exchanging Public Keys:
The Old-Fashioned Way
So, you’ve now generated a key pair, and
it’s time to exchange your public key.
You have at least two options for doing
so. You can do this manually by chang-
ing to the ~/.ssh/ directory and then re-
naming the id_rsa.pub file, as discussed
previously. Then, using anonymous FTP,
or even a USB key if you want to be
uber-secure, you can transfer your public
key to the ~/.ssh/ directory on the re-
mote system. Again, your goal is to es-
tablish security without having pass-

words travel
across the net-
work.

Then, copy the
contents of the
public key file for
the user on the re-
mote system into
the authorized_
keys file. The syn-
tax for copying
this information
is:

protocol | key hash | username@host

For example, if you had my public key
and had to edit the ~/.ssh/authorized_
keys file to allow me to automatically log
on to your system using SSH public key
encryption, you would enter the code
shown in Listing 1 into the file. Once
you have updated this file, you are ready
to test the trust relationship you’ve es-
tablished.

Exchanging Public Keys: The
New and Improved Way
But, you don’t have to do all this manu-
ally. You can use the handy ssh‑copy‑id
command. If, for example, the remote
system is already using SSH, you can
transfer your public key to the remote
system’s ~/.ssh/ directory using the
ssh‑copy‑id command, as follows:

$ ssh‑copy‑id sandi@hostb.company.com

The preceding command will automati-
cally transfer your public SSH key into
the ~/.ssh/ directory of the remote sys-
tem. This command will automatically
update your ~/.ssh/authorized_keys file.
But, remember that you’ll have to log in
to that remote system using a traditional
user name and password. So, to be ex-
tra-secure, I would use a less risky
method, such as physically transporting
the key. If that’s not possible, then you’ll
have to take a risk.

To make it so that your system automatically shows the rando-
mart visual host key for a system, edit the /etc/ssh/ssh_config
file so that the VisualHostKey value is no longer commented out
and reads as follows:

VisualHostKey yes

You will then need to restart the SSH daemon by issuing the fol-
lowing command from a terminal:

$ sudo /etc/init.d/ssh restart

Once you do this, you will see the visual host key every time you
log in to the system. Understand, though, that some applications
and scripts might see the visual host key as a problem; so, make
sure you use this feature carefully.

 Show your randomart

01 �01 ssh‑rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQDeBKQeIjmDLDH4bc5pX63980mpCIx6s22XgxvKAGL

02 �Iph1OjGfMacE/O6W6LHV9ZIiTvqRasuj4a9ejlJzMgoNKJGixwpcz/

03 �02 6lvU5gISbKwdW0E8p/U10mz5qtKQWaG+rx6Pai9o5+OnsTgadpZ/q6nPiXysl/PMs4AOTvjC9luQRju/

04 �oo7e9jrrkiIaKbyxy9oWn3oJu+8cUJyKB/hsNjk671jrplOyQ4HeU

05 �03 7hKtHEwVYQIXX8cC49WEcCCA5d288Q+zbBnhmBFqbtqHF48f9YKcLhF/pXDRrOMDAfAQ5VEQ

06 �Am47BVlGal+M+ar8DD+g0PSIkOOMk3YShFsOCR2H53 james@jamey

 Listing 1: Updating ~/​.ssh/​authorized_keys

22 A D M I N S p ec ia l : T R I C KS w it h SS L and SS H w w w. admin - ma ga z in e .co m

SSH and VNCT ri c ks w it h ss l and ss h

cryption and tunnel connections. Now,
I’ll show you how to use your new and
improved SSH connection to do some
tunneling. The whole idea behind tun-
neling is to start an encrypted “pipe” on
your own system that dumps out to the
remote system. You can then put any
protocol into that pipe, including VNC.

To create the tunnel, the following
conditions must exist on the host you
wish to connect to using VNC:
•	 It needs to be running the VNC server

on the default port (TCP 5900).
•	 It needs to be running SSH, preferably

using public key encryption.
Your own system doesn’t need to be run-
ning the VNC server, but you will need a
VNC client, such as the TightVNC viewer.

The first step is to create the tunnel be-
tween host a and host b. Suppose I’m at

the system named hosta.company.com, and
I want to create a tunnel that accommo-
dates VNC traffic to hostb.company.com. To
create a tunnel using the good old termi-
nal-based ssh command, I would issue
the following at the command prompt:

ssh ‑f sandi@hostb.company.com ‑L U

 4600:hosta.company.com:5900 ‑N

The preceding command tells SSH do
several things. To begin, the ‑f option
tells SSH to go immediately into the
background. The next part, sandi@hostb.
company.com, tells SSH to connect to that
remote system. Then, ‑L 4600:, tells SSH
to start a tunnel at TCP port 4600 of my
local system and connect to port 5900 of
the remote system, which is the default
VNC port. The ‑N option simply tells SSH
not to issue a command on the remote
system. This option effectively tells the
remote SSH daemon that it is participat-
ing in a tunnel.

Using PuTTy to Tunnel
SSH Traffic
You don’t have to be so “old school” like
me and use the terminal-based ssh com-
mand. You can use the excellent PuTTy
application, as shown in Figure 3, to cre-
ate the tunnel.

In this figure, you can see that I’ve
specified 4600 as the local source port
and the destination as hostb.company.
com, port 5900. Make sure that the Local
and Auto radio buttons are selected.

You can download PuTTy by using
Synaptic and searching for the name, or

you can download
the application di-
rectly from the
website [4]. Regard-
less, you’ll still
need to have the
SSH daemon and
client software in-
stalled.

Tunneling
VNC Traffic
But, your tunnel
isn’t done just yet.
To tunnel VNC
through SSH, you
can use the
vncviewer com-
mand and do the
following:

$ vncviewer ‑via localhost:4600

Or, if you prefer to use a graphical client,
you could use the xtightvncviewer com-
mand and enter localhost:4600 into the
window. If you happen to be using a
Windows-based application, such as the
TightVNC client, you do the same thing.
Just specify localhost and the appropri-
ate port, in this case 4600.

Regardless of the client you use, you
now have tunneled your VNC client
through a secure SSH connection.

Problems with Tunneling?
You might find that it’s impossible to
tunnel connections. In that case, the
problem generally comes down to a fire-
wall issue. Although, thankfully, most
ISPs do not block SSH, many workplaces
will block SSH traffic.

If that’s the case, then you’ll have to
resort to one of the following: First, you
could use an approved protocol to tunnel
your traffic. Second, you could try and
talk your network administrator or secu-
rity expert into adding a firewall rule
that allows SSH traffic. Good luck with
that! Most admins/​security experts will
view your request as punching a hole in
the firewall and will likely deny your re-
quest.

Conclusion
Congratulations! You now know how to
use SSH more securely by enabling pub-
lic key authentication. Not only that, but
you’ve also learned that you can tunnel
VNC traffic through an SSH tunnel. Of
course, you aren’t limited to tunneling
just VNC traffic. If desired, you could
tunnel email, web, instant messaging, or
any other traffic. All you need are two
systems that support SSH, a client that
supports the ability to specify a custom
port, and a network connection that
doesn’t block SSH traffic. nnn

Why doesn’t SSH use public key authen-
tication in the first place? If you want the
short answer, it’s because the process of
creating a key pair for individual logins
is best left to end users and systems ad-
ministrators. The choice of moving from
user-based authentication to key-based
authentication requires some personal
steps, including choosing where to store
the private key and whether or not to
password-protect it, and choosing which
encryption algorithm you want to use.

The creators of OpenSSH, which is the
version used in Ubuntu, know about all
of these choices, and so they leave the
process to those who know best: edu-
cated end users and administrators.

 Your Choice

Figure 3: Using PuTTy to start an SSH tunnel.

[1]	� Ubuntu Security forum:
http://​ubuntuforums.​org/​
showthread.​php?​t=510812

[2]	� SSH:
http://​en.​wikipedia.​org/​wiki/​SSH

[3]	� VNC: http://​en.​wikipedia.​org/​wiki/​
Virtual_Network_Computing

[4]	� PuTTy: http://​www.​chiark.​greenend.​
org.​uk/​~sgtatham/​putty

 Info

23A D M I N S p ec ia l : T R I C KS w it h SS L and SS Hw w w. admin - ma ga z in e .co m

T ri c ks w it h ss l and ss hSSH and VNC

http://ubuntuforums.org/showthread.php?t=510812
http://ubuntuforums.org/showthread.php?t=510812
http://en.wikipedia.org/wiki/SSH
http://en.wikipedia.org/wiki/Virtual_Network_Computing
http://en.wikipedia.org/wiki/Virtual_Network_Computing
http://www.chiark.greenend.org.uk/~sgtatham/putty
http://www.chiark.greenend.org.uk/~sgtatham/putty

24 A D M I N S p ec ia l : T R I C KS w it h SS L and SS H w w w. admin - ma ga z in e .co m

char-
acter is
the start
of the com-
mand: for exam-
ple, ~#> lists the open SSH connections,
and ~ terminates the current connection,
which is useful if the shell isn’t respond-
ing. For a list of all support commands,
type ~? (Figure 1). The ‑e option lets you

T
he term SSH (“Secure Shell”) re-
fers to both the network protocol
and a suite of tools that give ad-
ministrators the ability to log in

to a remote device via a secure connec-
tion. SSH has been around since 1995,
and the popular OpenSSH free imple-
mentation [1] has existed since the turn
of the millennium. SSH gives the admin-
istrator a single tool for remote login, as
well as a collection of remote applica-
tions for remote execution, remote copy,
and remote X11 client and a number of
port forwarding scenarios.

SSH and the tools of the SSH package
– ssh, slogin, scp, and sftp – have en-
tirely replaced legacy Unix tools such as
rsh, rlogin, rcp, and telnet. Each of
these commands executes a shell on the
remote host and allows the user to call
commands. Because each client needs a
user account on the host where the com-
mands will run, all the commands men-
tioned thus far also perform authentica-
tion.

Because the SSH commands use a
public key cryptography infrastructure,
the SSH package also include the
ssh‑keygen, ssh‑agent, and ssh‑add tools
to support authentication. The complete
syntax, including a full set of options, is
output when you type ssh without any

parameters or when you type the man ssh
command.

Interactive SSH
Once you have opened an SSH connec-
tion

ssh ‑l user_name Remote‑Host

and entered your user password on the
remote host, SSH will forward all of your
keyboard input to the remote host. A
lesser known fact is that you can use es-
cape sequences to control SSH itself. The
tilde at the start of a new line tells SSH
to expect an escape sequence; the next

Figure 1: SSH can be controlled via escape sequences.

Most admins know that SSH is a useful tool for setting up

encrypted connections to a remote host. But SSH can do

much more, including transferring files, forwarding ports,

and even setting up a genuine VPN. By Thomas Drilling

Doing more with SSH

Connection
Protection

M
arcio Eugenio, 12

3
rf.com

SSH TricksT ri c ks w it h ss l and ss h

25A D M I N S p ec ia l : T R I C KS w it h SS L and SS Hw w w. admin - ma ga z in e .co m

specify a different character for introduc-
ing escape sequences in SSH.

Depending on your keyboard layout,
you might need to press the keys for cre-
ating the tilde (~) twice – as is the case
on Ubuntu – before you type the re-
quired command character. (Note that
the visible ~? characters in Figure 1 are
for illustration purposes only. In a real
situation, the escape sequence does not

appear as visible text after the
prompt.)

Copying Files
SSH lets you transfer files

with the scp command;
however, most admin-

istrators tend to use
the far more pow-

erful rsync
command,

which
means
that scp
is be-
coming
historic,
although

it is fine for
most pur-

poses. Type man
scp for the com-

plete syntax. In the
simplest case, enter the

following:

scp File1 user_name@Host:File2

To transfer files in the other direc-
tion, enter:

scp user_name@Host:File1 File2

To recursively copy complete directory
trees, you can add the ‑r flag.

Sshfs
If you are looking for a more elegant ap-
proach, you will probably want to mount
the remote filesystem via SSH, which
you can do thanks to the sshfs tool (Fig-
ure 2). Because SSH authenticates and
encrypts any data you transfer, sshfs is a
very convenient tool for securely trans-
ferring data across the Internet. Sshfs
gives a non-privileged user the ability to
mount a remote filesystem using SSH;
however, this technique does required
the FUSE (Filesystem in Userspace [2])

module on the client side. On the server
side, sshfs requires only an SSH server
with an SFTP subsystem. If you install
the sshfs package on the client side,
your package manager will automati-
cally install fuse‑utils and lib‑fuse2.

In the simplest case, the syntax for
sshfs is as follows:

sshfs user_name@host:path U

 local‑mountpoint [options]

Data Transfer with
Graphical Clients
Some file managers (e.g., Midnight Com-
mander) can use an SSH connection to
access the filesystem of a remote host

Figure 2: The contents of /root on a remote server: once via SSH and then as a local mount

using sshfs.

Figure 3: Midnight Commander can use SSH to access remote directories.

T ri c ks w it h ss l and ss hSSH Tricks

26 A D M I N S p ec ia l : T R I C KS w it h SS L and SS H w w w. admin - ma ga z in e .co m

SSH TricksT ri c ks w it h ss l and ss h

KDE users can also add an SSH net-
work folder as a bookmark in Dolphin in
Places | Network by selecting Add net-
work folder.

Incidentally, KDE’s Fish syntax also
gives you access to remote files in the
complete KDE context and, thus, via File
| Open in most KDE applications. Users
need to enable editable address input in
the KDE file selector; to do so, right-click
the current path in the file selector to
open the file selector’s drop-down menu
and select Edit instead of the default
Navigate.

Using Compression
SSH also supports compression, which
can be really useful if the network is a
bottleneck. Compressing the communi-
cation between ssh and sshd might in-
volve more computational overhead at
both ends, but to compensate for this,
SSH only needs to transfer about 50 per-
cent of the packets. If you permanently
set up compression on the server side
using a Compression yes line in the /etc/
ssh/sshd_config file, you can really
speed up slow DSL or ISDN transfers in
combination with port forwarding.

Similarly, you can set up permanent
compression on the client side with a
Compression yes line in $HOME/.ssh/con‑
fig. To enable compressed transmission
temporarily, simply use the ‑C option –
not to be confused with ‑c for the cipher
specification in encrypted connections.

Master Mode
Master mode gives the administrator the
ability to open multiple logical SSH con-
nections over a physical connection by
starting one SSH connection as the mas-
ter. You can then route all further SSH
connections to the same host with the
same user account at the other end via
the master connection – without needing
to open a new physical connection. In
this case, the client uses a Unix socket
on the master and not directly on the

server at the
other end; you
need to specify a
master socket.

Transferring
multiple ses-
sions via a mas-
ter channel can
also offer signifi-
cant latency

(Figure 3). The mc method doesn’t re-
quire kernel support on the client. The
Gnome file manager, Nautilus, also sup-
ports the SSH protocol; the administrator
only needs to type the required address
as a complete URL (e.g., ssh://computer-
name/path) in the address bar. (The cur-
rent Nautilus version 3.2.1 in Gnome 3
doesn’t display the address bar by de-
fault, so you need to press Ctrl+L to
switch it on, as shown in Figure 4.) Nau-
tilus then displays the SSH login dialog.

Of course, you can log in to the SSH
server with a different username:

ssh://user_name@hostname/path

If you prefer an even more convenient
approach, you can also use the File |
Connect to server wizard in Nautilus, se-
lect the ssh entry from the Type drop-
down box in the Server details area of
the Connect to server dialog, and enter
the authentication data in the corre-
sponding boxes in the dialog. Inciden-
tally, this type of SFTP/​SSH login will
work in most other Gnome applications.

KDE has had SSH support for a long
time. In Dolphin or Konqueror, you can
access SSH through the fish KIO slave,
as follows,

fish://computername/path

or you can include the user account
with:

fish://user_name@computername/path

Dolphin has also stopped showing users
the URL input bar by default in the latest
version; however, you can quickly find
this function in View | Address | Editable
address bar. Dolphin then immediately
shows you the user authentication dia-
log; however, it uses the currently valid
local username as the default, and you
will typically need to overwrite this with
the remote username.

benefits. To configure this “opportunistic
sharing,” you just need to add the fol-
lowing lines to the $HOME/.ssh/config
file:

Host *

ControlPath ~/.ssh/master‑%l‑%r@%h:%p

ControlMaster auto

Host * means that the subsequent con-
figuration is used for connections from
any host; alternatively, you could enter a
static hostname. ControlMaster auto tells
SSH to use an existing connection for
master mode if possible; otherwise, SSH
opens a new connection. The following
entry

ControlPath ~/.ssh/master‑%l‑%r@%h:%p

tells SSH where to create the socket file
representing the master connection. %r is
replaced by the login name, %h by the
hostname, and %p by the port number.
The master connection is then initiated
as follows:

ssh ‑M ‑S $HOME/.ssh/socket user_name@host

To open any subsequent connection to
the same host with the same user ac-
count, enter:

ssh ‑S $HOME/.ssh/socket user@host

X11 Forwarding
X11 forwarding lets you launch programs
with a graphical user interface on a re-
mote computer via SSH but directs the
input and output to the local desktop.
This technique works independently of
the operating system on the remote com-
puter, assuming the program keeps to
the X11 standard, which thus practically
restricts the option to Linux, BSD, and
Unix.

Although any number of powerful
graphical, remote control alternatives are
available, SSH has the advantages of
being included free with any Linux sys-
tem. Admittedly, GUI-based remote con-
trol with SSH isn’t very fast, but for oc-
casional system administration use, X11
forwarding is fine.

To enable X11 forwarding, use the ‑X
option (not to be confused with the
lowercase ‑x, which disables port for-
warding). X11 forwarding only gives the
program on the remote computer re-

Figure 4: Nautilus 3.2.1 forces users to enable the address bar manually

by pressing Ctrl+L.

T ri c ks w it h ss l and ss hSSH Tricks

connection. The administrator on the
local machine ws1‑kubu can set up the
FTP connection in this way (Figure 5):

drilling@ws1‑kubu:~$ sudo U

 ftp localhost 4444

The port forwarding syntax in the man
page is as follows:

ssh ‑L [bind_address:]port:host:port U

 user@remotehost

This syntax is slightly misleading. The
parameters host and remotehost in this
syntax notation refer to the same remote
server because host is from the view-
point of the remote system. Thus, you
could implement this as localhost:21 in-
stead of www.thomas‑​drilling.de:21 be-
cause localhost relates to the remote
host’s perspective.

When choosing the input port (SSH),
note that you are not allowed to use a
privileged port below 1024 unless you
are root, which explains why higher port
numbers are typically used for local port
forwarding. The second port parameter
specifies the target port for the forward-
ing operation; thus, this setting refers to
the port number of the service you are
tunneling. If you only want to support
port forwarding and prevent a shell
being launched on the remote host, you
can add the ‑N parameter (Figure 6).

If you want to query, say, a POP3 mail
server on your virtual server via an en-

remote port forwarding – is defined by
the parameters ‑L and ‑R.

Local port forwarding forwards a con-
nection arriving from a freely selectable
local client port through the secure SSH
channel to a port on the remote server;
this is a classic “outward bound” tunnel.
The generic syntax to initiate local port
forwarding is:

ssh remoteuser@remotehost ‑L U

 localport:remotehost:remoteport

The following example tunnels an inse-
cure FTP connection using the standard
port 21 across a secure SSH connection.
An FTP server is running on the ma-
chine www.thomas‑drilling.de, and the
client computer ws1‑kubu opens the se-
cure SSH connection and subsequently
launches the FTP client in a separate ter-
minal session with a target address of
port 4444 on the localhost.

drilling@ws1‑kubu:~$ sudo U

 ssh dilli@www.thomas‑drilling.de U

 ‑L 4444:www.thomas‑drilling.de:21

This command opens a secure SSH con-
nection on the local SSH client to the re-
mote computer www.thomas‑drilling.de
using the dilli user account. At the same
time, it is listening for any requests that
reach port 4444 from ws1‑kubu in order to
forward them to port 21 on the computer
www.thomas‑drilling.de; the communica-
tions use a previously configured SSH

stricted privileges for the local display,
and this can cause the occasional appli-
cation to fail. If you are experiencing
privilege issues, you can still grant the
program full access with the ‑Y option,
although this option is not recom-
mended.

You should also avoid the ‑Y option if
you don’t trust the administrator on the
remote host; ‑Y installs a tunnel, which
attackers could also use for reverse tun-
neling to attack your display. Inciden-
tally, you can alternatively call SSH with
the ‑o parameter instead of ‑X and pass
in a value of ForwardX11=yes. You also
have the option of setting ForwardX11 yes
in $HOME/.ssh/config.

Building Tunnels with
SSH
SSH also lets you secure (virtually) any
other protocol, such as the legacy POP3
protocol or insecure VNC connections.
Port forwarding allows administrators to
redirect individual ports through a se-
cure SSH connection, with SSH acting as
a proxy that accepts the connection at
one end of the SSH tunnel and connects
the endpoint for the connection with the
target server at the other end.

SSH supports two different operating
modes, local port forwarding and remote
port forwarding, which are often referred
to as outgoing and incoming tunnels, al-
though local port forwarding is used far
more frequently. The direction in which
you set up the tunnel – that is, local or

Risk-Free Trial!

shop.linuxnewmedia.com/trial

Get it
now!
Save time on

delivery with our
pdf editionS

(dvd not included)

 ORdeR yOuR TRial nOw!
UK £ 3, Europe € 3, USA / Canada US$ 3, Rest of World (by Airmail) US$ 9

LNM_LMI_Trial_1-3hz.indd 1 8/14/12 12:14:58 PM

28 A D M I N S p ec ia l : T R I C KS w it h SS L and SS H w w w. admin - ma ga z in e .co m

SSH TricksT ri c ks w it h ss l and ss h

crypted connection, you can set up an en-
crypted SSH tunnel for port 110 on your
Vserver using local port forwarding:

ssh user_name@remotehost ‑L U

 20110:remotehost:110

Now, all you need to do is enter local‑
host with a port number of 4444 as your
POP server in your mail client, such as
Thunderbird, to encrypt mail transmis-
sion without the mail server itself sup-
porting SSL (Figure 7).

Remote port forwarding works in ex-
actly the opposite way from local port
forwarding; in other words, the connec-
tion arrives at the host port on which
sshd is running. The daemon forwards
the data through the SSH tunnel to an
arbitrarily configurable port on the cli-
ent. The syntax is as follows:

ssh remoteuser@remotehost U

 ‑R remoteport:localhost:localport

Dynamic Forwarding
with SSH
Thanks to the dynamic option ‑D, an
SSH client can act like a SOCKS server
(SOCKS proxy) and automate access to
remote servers via a secure SSH tunnel.
Dynamic port forwarding is also useful if
you want to access a service on your
home or enterprise server via a secure
tunnel from a public WLAN hotspot.

You do need a matching SOCKS client
for the service, which is the case for a
web browser. In the browser’s connec-
tion options, enter the local SSH client as
the SOCKS proxy with a freely configu-
rable port number. Because transmis-
sions between the client computer and
the WLAN router are not encrypted on a
WLAN hotspot and can thus be read by
any network sniffer, this approach is al-
ways useful if you need to transmit login
credentials or other sensitive data to ac-
cess your own server via the web. You
can set up the tunnel to the remote sshd
as follows:

ssh ‑D port user_name@remotehost

Now you only need to enter the local
SSH client and the port as the SOCKS
proxy for your browser; Figure 8 shows
an example with Firefox.

Again, the ‑N option is useful to tell
the client to open the tunnel but prevent

Figure 7: Local port forwarding lets you secure the inherently insecure POP3 protocol for

querying a remote mail server, even if the POP server doesn’t support SSL.

Figure 6: The ‑N parameter prevents a shell from being launched on the remote system

through local port forwarding.

Figure 5: Setting up an SSH tunnel to protect the insecure FTP protocol. The user can conve-

niently open the secure FTP connection from the client side using a local port.

29A D M I N S p ec ia l : T R I C KS w it h SS L and SS Hw w w. admin - ma ga z in e .co m

T ri c ks w it h ss l and ss hSSH Tricks

port number specified for remote port
forwarding (4444).

This example demonstrates the princi-
ple of reverse tunneling, although this
technique might not succeed in the cur-
rent scenario because the company fire-
wall will not let requests for port 22
pass. Most enterprise firewalls are con-
figured this way, but they will allow re-
quests for port 80 (HTTP). Nothing can
stop you from letting your SSH server at
home listen on a different port – for ex-
ample, port 80. But, once again, please
remember that you might be violating
company policy or even infringing on
the law in some jurisdictions.

Conclusions
SSH can do much more than just open a
remote shell, and many system adminis-
trators haven’t yet discovered its full po-
tential. If you take the time to investigate
the options, you might just discover that
SSH makes proprietary VPN solutions
obsolete for secure file transfers. In fact,
assuming you have the latest versions of
the SSH server and client, SSH offers
state-of-the-art security with authentica-
tion and encryption for a wide range of
remote access scenarios. nnn

on SSH tunneling alterna-
tives.

Drilling Holes
in the Firewall
The methods discussed
thus far clearly demon-
strate the power of SSH,
especially for port for-
warding. All of the exam-
ples have been for friendly
use. But SSH can also be
used for unfriendly activi-
ties. For example, if your
own firewall blocks SSH
port 22, but you need an
option for securely access-
ing the data on your office
machine, you can apply
the following trick, which
again relies on remote port
forwarding.

An OpenSSH server has
to be running on your company server,
even if the firewall prevents requests for
port 22. To enable an SSH server, you
can install both the openssh‑client and
the server components for SSH in the
form of the ssh package. If neither the
SSH client nor the server were in place
previously, Debian and Ubuntu adminis-
trators can also launch tasksel at the
command line and then select the
OpenSSH server package group.

To follow this example, you need to be
the administrator of the remote server, or
be authorized for the experiments, be-
cause you will very likely infringe on your
company’s security policies. Back home,
you also need to make sure your local
machine accepts SSH connections; you
might need to install the server packages
as well as the OpenSSH client for this.

Additionally, your home computer
needs a DnyDNS address to make it re-
motely accessible. Once the SSH server
is running on your home computer, open
a remote port-forwarding SSH tunnel for
port 22 on the enterprise server to sshd
on your home computer, but using the
publicly accessible DynDNS address.

ssh user_name@home_computer ‑R U

 4444:home_computer:22

Then, just leave the tunnel as is and run
ssh user_name@home_computer ‑p 4444
through this tunnel to open another tun-
nel to the enterprise server using the

it from starting a shell on the server. The
use of an SSH tunnel as a SOCKS proxy
is pretty close to a full-fledged VPN; the
only difference being that, although the
data traffic from the applications you use
runs through the SSH tunnel set up in
your proxy settings, the DNS requests
don’t; this means the SSH tunnel is not
suitable for tasks such as anonymous
surfing.

If you want to tunnel other programs or
services besides HTTP via SSH, Linux
users should be aware that some pro-
grams do not support SOCKS proxies. If
this is the case, you can install the tsocks
wrapper on Linux and add the following
/etc/socks/tsocks.conf configuration file:

server = localhost

server_port = 12222

server_type = 4

VPN over SSH: A TUN/​
TAP Tunnel
OpenSSH Version 4.3 or later provides a
‑w option that lets users set up a VPN as
a Layer 2 or Layer 3 tunnel with virtual
network adapters (TUN/​TAP inter-
faces). However, this technique in-
volves the administrator’s server and
client-side loading of the kernel mod-
ules for the TUN/​TAP devices using
modprobe. In other words, the approach
is not useful for ad hoc scenarios such
as an Internet cafe.

To set up the required virtual network
adapters, enter the following on the cli-
ent:

ifconfig tun0 10.0.2.1 netmask U

 255.255.255.252

The server configuration looks like this:

ifconfig tun0 10.0.2.2 netmask U

 255.255.255.252

route add ‑host target_host dev eth0

After you enter these commands, the user
on the client can establish a VPN tunnel:

ssh ‑l user ‑p sshd‑port ‑w0:0 U

 target‑Host

Additionally, you need to enable the sshd
configuration on the Linux server by set-
ting the PermitTunnel yes option.

See the article on SSH tunnel connec-
tions elsewhere in this issue for more

Figure 8: In dynamic port forwarding, the SSH client acts as a

SOCKS proxy. The user only needs to add the localhost and

the correct port number to the browser settings.

[1]	� OpenSSH website:

http://​openssh.​org

[2]	� FUSE: http://​fuse.​sourceforge.​net

 Info

http://openssh.org
http://fuse.sourceforge.net

M
y Internet service provider
normally handles the job of
shoveling data packets
around fairly well. But if

something fails, I often get a script-read-
ing ignoramus on the hotline who totally
ignores elementary, logical principles.
They attempt to put the blame on the
user instead of telling the trained system
administrators who work with them that
the problem is obviously on their side.
Once, when I called to complain about a
slow DNS server, somebody actually
asked if my DSL modem was on the floor
or in the bookcase.

The Age of Spam
Just recently, I had a problem with their
SMTP server and wanted to avoid the
frustration of calling my provider. I don’t
send much in the line of email from my
home desktop, but when I do, I expect it
to reach its destination. For example, if
there’s a power failure, my UPS cuts in,

a fact that is noticed by Nagios, which in
turn quickly sends me an email.

Of course, I could turn to my hosting
provider instead, a private company who
doesn’t operate as a government-pro-
tected quasi-monopoly. Their SMTP
server is very reliable, but in the age of
spam, they won’t accept mail from un-
known IPs. Because the provider offers
SSH access, I could drill a tunnel like

ssh ‑L 1025:localhost:25 U

 mschilli@host.provider.com

from my local port 1025 to the SMTP
port (25) on the hosted computer. From
the point of view of the computer in my
hosting provider’s farm, it would look
like the request came from the leased
shared host Web server.

Dynamic Drilling
Budget hosting providers will probably
not want scrooges like myself keeping

SSH tunnels open day and night without
typing something into their leased web-
sites; but, if I only drill the tunnel when
I want to send out email and then tear it
down afterward, they’ll probably be
okay with it. To implement this, the
minimail daemon, written in Perl, listens
for requests from local mail clients on
the SMTP port (25). The clients are bliss-
fully unaware of the complexity behind
this, they’ll be under the impression that
they’re talking to a local mailserver.

The daemon accepts the request,
opens a tunnel on local port 1025 to port
25 of the hosting provider, then waits for
the connection to come up. For the local
mail client, this just looks like a fairly
slow mail server. The daemon then
shoves the request lines from the client
(local port 25) to local port 1025. Packets
are entering the tunnel and pushed
through to port 25 on the provider’s side
(Figure 1). Return packets, arriving back
through the tunnel are forwarded by the

Instead of running a local mailserver, a Perl daemon listens to outgoing SMTP requests and
drills a temporary SSH tunnel to a remote SMTP server on demand. By Mike Schilli

Perl script tunnels mail traffic on demand

 Tunnel Vision

a
lem

b
a
_a

rts, Foto
lia

.co
m

30 A D M I N S p ec ia l : T R I C KS w it h SS L and SS H w w w. admin - ma ga z in e .co m

Perl: Drilling SSH TunnelsT ri c ks w it h ss l and ss h

daemon to the local client, which com-
pletes the impression that it is indeed
talking to the local SMTP server.

If multiple requests to send mail occur
in quick succession, it doesn’t make
sense to break down and build up the
tunnel again; to handle this case, the
daemon leaves the tunnel up for 10 sec-
onds after the last client has bailed out.
To keep this looking human in the host’s
logs, the script adds a random number
between 0 and 25 seconds to the wait.

To Root or Not to Root?
To allow the daemon in Listing 1 to
bind() the SMTP port (25), it must run
as the root user; to mitigate the security
risk this implies, the daemon drops these
privileges later on. A program launched
with sudo has the SUDO_USER environ-
ment variable set to the account that ran
the sudo command. The script drops its
privileges and changes the effective user
ID to this non-privileged account. The
sudo_me() command in line 15 from the
CPAN Sysadm::Install module checks if
root ran the script and, if not, uses sudo
to change things.

The CPAN App::Daemon module ex-
ports the daemonize() function which
lets the script act as a daemon and pro-
cess the minimail start|stop com-
mands. It will put itself into the back-
ground after running through the start
sequence – only the logfile reveals what

the daemon is currently doing. The Log-
4perl logfile is set by the ‑l option or,
programmatically, via the App::​Daemon::​
logfile variable, as shown in line 18. If
the daemon is launched in the fore-
ground with the ‑X option, the log out-
put is sent to Stderr instead.

The BEGIN block in lines 14-23 makes
sure that the POE module in line 25 is
not loaded until the process has been
daemonized (line 22). This is important,
so a helpful soul from the POE mailing
list told me; otherwise, POE won’t clean
up the child processes it creates later on.

Because App::Daemon also offers a
feature for dropping root privileges, line
16 of the module assigns a value of root

to the $as_user variable and thus leaves
the security switch to the script, which
handles it after binding the daemon to
port 25 in the forwarder code, starting at
line 48.

POE to the Rescue
Writing your own network daemon nor-
mally costs plenty of blood, sweat, and
tears, but, thankfully, CPAN offers a
number of POE components you just
need to glue together. For example, mini‑
mail creates the PoCoForwarder port for-
warder from the POE::​Component::​Cli-
ent::​TCP and POE::​Component::​Server::​
TCP components. It binds with the local
$port_from port and forwards anything

01 �#!/usr/local/bin/perl ‑w

02 �#############################

03 �# minimail ‑ SMTP daemon

04 �# auto‑opening tunnels

05 �# Mike Schilli, 2010

06 �# (m@perlmeister.com)

07 �#############################

08 �use strict;

09 �use Sysadm::Install qw(:all);

10 �use App::Daemon

11 � qw(daemonize);

12 �use Log::Log4perl qw(:easy);

13

�14 �BEGIN {

15 � sudo_me();

16 � $App::Daemon::as_user =

17 � "root";

18 � $App::Daemon::logfile =

19 � "/var/log/minimail.log";

20 � $App::Daemon::loglevel =

21 � $INFO;

22 � daemonize();

23 �}

24

�25 �use POE;

26 �use PoCoForwarder;

27 �use PoCoTimedProcess;

28

�29 �my $port_from = 25;

30 �my $port_to = 25;

31 �my $tunnel_port = 1025;

32 �my $real_smtp_host =

33 � 'host.provider.com';

34

�35 �my $process =

36 � PoCoTimedProcess‑>new(

37 � heartbeat => 10,

38 � timeout => int(rand(25)) +

39 � 10,

40 � command => [

41 � "ssh", '‑N', '‑L',

42 � "$tunnel_port:" .

43 � "localhost:$port_to",

44 � $real_smtp_host

45 �],

46 �);

47

�48 �my $forwarder =

49 � PoCoForwarder‑>new(

50 � port_from => $port_from,

51 � port_to => $tunnel_port,

52 � port_bound => sub {

53 � INFO "Dropping privileges";

54 � $< = $> = getpwnam(

55 � $ENV{SUDO_USER});

56 � },

57 � client_connect => sub {

58 � $process‑>launch();

59 � },

60 �);

61

�62 �$process‑>spawn();

63 �$poe_kernel‑>run();

 Listing 1: minimail

Figure 1: The mail client talking to port 25 on the forwarder, whose TCP client session talks to

the tunnel.

31A D M I N S p ec ia l : T R I C KS w it h SS L and SS Hw w w. admin - ma ga z in e .co m

T ri c ks w it h ss l and ss hPerl: Drilling SSH Tunnels

that arrives there to the $tunnel_port –
and vice versa. This is no trivial matter
because multiple mail clients can use the
local port at the same time and would
need to be served in parallel.

The second component, that is, PoCo‑
TimedProcess, uses the launch() method
to start a process like the tunnel for a
certain amount of time or extends its
lifetime if it is already running. Every
time the forwarder discovers a newly
docked client, it calls the launch()
method in the client_connect() call-
back (line 58). The method calls the ssh
command in lines 41-44. The call to

ssh ‑N ‑L U

 1025:localhost:25 host.provider.com

thus connects to the host at host.pro-
vider.com via the encrypted SSH proto-
col, logs in when it gets there, and,
thanks to the ‑N option, doesn’t start an
interactive shell but just hangs around
forwarding datastreams back and forth.

Port 1025 is the desktop-side end of
the tunnel; however, localhost in the
ssh command above refers to host.pro-
vider.com, because the SSH session is
logged in there at this point. The 25 fol-
lowing the colon is the SMTP port on the

hosted machine. If the username on the
hosted machine is not the same as on
the desktop, the call needs to add a valid
account name like mschilli@host.pro-
vider.com to tell SSH which to use.

Component Glue
What happens behind the scenes in the
two POE components? Figure 1 shows
the diagram with the server and client
components and the port numbers they
use. The port forwarder TCP server lis-
tening on port 25 winds up a TCP client
session for each client to connect them
to the tunnel independently.

001 �#############################

002 �# POE Port Forwarder

003 �# Mike Schilli, 2010

004 �# (m@perlmeister.com)

005 �#############################

006 �package PoCoForwarder;

007 �use strict;

008 �use Log::Log4perl qw(:easy);

009 �use

010 � POE::Component::Server::TCP;

011 �use

012 � POE::Component::Client::TCP;

013 �use POE;

014

�015 �#############################

016 �sub new {

017 �#############################

018 � my ($class, %options) = @_;

019

�020 � my $self = {%options};

021

�022 � my $server_session =

023 � POE::Component::Server::TCP

024 � ‑>new(

025 � ClientArgs => [$self],

026 � Port => $self‑>{port_from},

027 � ClientConnected =>

028 � \&client_connect,

029 � ClientInput =>

030 � \&client_request,

031 � Started => sub {

032 � $self‑>{port_bound}‑>(@_)

033 � if defined

034 � $self‑>{port_bound};

035 � },

036 �);

037

�038 � return bless $self, $class;

039 �}

040

�041 �#############################

042 �sub client_connect {

043 �#############################

044 � my (

045 � $kernel, $heap,

046 � $session, $self

047 �)

048 � = @_[

049 � KERNEL, HEAP,

050 � SESSION, ARG0

051 �];

052

�053 � $self‑>{client_connect}

054 � ‑>(@_)

055 � if defined

056 � $self‑>{client_connect};

057

�058 � my $client_session =

059 � POE::Component::Client::TCP

060 � ‑>new(

061 � RemoteAddress =>

062 � "localhost",

063 � RemotePort =>

064 � $self‑>{port_to},

065 � ServerInput => sub {

066 � my $input = $_[ARG0];

067

�068 � # $heap is the

069 � # tcpserver's (!) heap

070 � $heap‑>{client}

071 � ‑>put($_[ARG0]);

072 � },

073 � Connected => sub {

074 � $_[HEAP]‑>{connected} = 1;

075 � },

076 � Disconnected => sub {

077 � $kernel‑>post($session,

078 � "shutdown");

079 � },

080 � ConnectError => sub {

081 � $_[HEAP]‑>{connected} = 0;

082 � $kernel‑>delay(

083 � 'reconnect', 1);

084 � },

085 � ServerError => sub {

086 � ERROR $_[ARG0]

087 � if $_[ARG1];

088 � $kernel‑>post($session,

089 � "shutdown");

090 � },

091 �);

092

�093 � $heap‑>{client_heap} =

094 � $kernel‑>ID_id_to_session(

095 � $client_session)

096 � ‑>get_heap();

097 �}

098

�099 �#############################

100 �sub client_request {

101 �#############################

102 � my ($kernel, $heap,

103 � $request) =

104 � @_[KERNEL, HEAP, ARG0];

105

�106 � return if

107 � # tunnel not up

108 � # yet, discard

109 � !$heap‑>{client_heap}

110 � ‑>{connected};

111

�112 � $heap‑>{client_heap}

113 � ‑>{server}‑>put($request);

114 �}

115

�116 �1;

 Listing 2: PoCoForwarder.pm

32 A D M I N S p ec ia l : T R I C KS w it h SS L and SS H w w w. admin - ma ga z in e .co m

Perl: Drilling SSH TunnelsT ri c ks w it h ss l and ss h

The class expects the port_from port
(the one on which the server is listening
to client requests), the port_to port (the
desktop end of the tunnel), and two call-
back routines as parameters. The com-
ponent jumps to the subroutine refer-
ence stored in port_bound once the
server has bound to port 25 and can thus
drop its root privileges.

When dropping root privileges, it is
important to do it in the right order for
effective and real user IDs; otherwise,
the daemon could reestablish its root
privileges later [2]. With multiple paral-
lel threads, PoCoTimedProcess internally
would have to prevent a race condition
launching the tunnel twice. In the one-
process, one-thread environment that
POE provides, a simple variable check
without locking is fine – robust, easy to
code, and easy to understand when you
come back to the program years later!

The second forwarder callback, cli‑
ent_connect, is accessed whenever a
mail client docks on port 25. The PoCo‑

TimedProcess component’s launch()
method, which is executed in the call-
back, then sets up the tunnel if it doesn’t
exist. Internally, PoCoForwarder provides
a PoCo::Client::TCP type POE compo-
nent for each client connection, and
each connects to the desktop tunnel
port. In other words, although PoCo::​
Server::​TCP can manage any number of
clients, you need to deploy a separate
PoCo::Client::TCP component for each.

Closures: Confusingly
Elegant
Line 32 in Listing 2 shows how the com-
ponent runs the port_bound callback.
The POE TCP server created in line 24
enters the Started state after launching
successfully. PoCoForwarder retrieves the
subroutine reference defined by mini‑
mail from the $self object hash and
calls it. The callback code defined in
Minimail handles everything else.

Note that $self is not in the scope of
the handler assigned to the Started

state. Instead, it comes courtesy of the
PoCoForwarder class’s new() constructor;
however, the subroutine mutates to a
closure that includes the lexical $self
variable and thus remains valid after
leaving the scope of the constructor (but
only within the callback).

On the other hand, the Client‑Args
parameter in line 25 makes sure the
server component provides the $self ob-
ject hash as an argument, ARG0, if it en-
ters the client_connect() callback func-
tion. In line 54, the component runs the
client_connect callback set by the main
script earlier, which launches the tunnel
process. Note the timing problem that
occurs here because it is difficult to pre-
dict how long the tunnel will take to
come up. This means that our newly
fired up TCP client might try to bind to a
port later when no one is listening in.

In this case, it isn’t an issue. The TCP
client enters the ConnectError state (line
80), which schedules a reconnect event
for one second later in POE’s todo list

001 �#############################

002 �# POE Timed Process

003 �# Launcher Component

004 �# Mike Schilli, 2010

005 �# (m@perlmeister.com)

006 �#############################

007 �package PoCoTimedProcess;

008 �use strict;

009 �use warnings;

010 �use POE;

011 �use POE::Wheel::Run;

012 �use Log::Log4perl qw(:easy);

013

�014 �#############################

015 �sub new {

016 �#############################

017 � my ($class, %options) = @_;

018

�019 � my $self = {%options};

020 � bless $self, $class;

021 �}

022

�023 �#############################

024 �sub launch {

025 �#############################

026 � my ($self) = @_;

027

�028 � $poe_kernel‑>post(

029 � $self‑>{session}, 'up');

030 �}

031

�032 �#############################

033 �sub spawn {

034 �#############################

035 � my ($self) = @_;

036

�037 � $self‑>{session} =

038 � POE::Session‑>create(

039 � inline_states => {

040 � _start => sub {

041 � my ($h, $kernel) =

042 � @_[HEAP, KERNEL];

043

�044 � $h‑>{is_up} = 0;

045 � $h‑>{command} =

046 � $self‑>{command};

047 � $h‑>{timeout} =

048 � $self‑>{timeout};

049 � $h‑>{heartbeat} =

050 � $self‑>{heartbeat};

051 � $kernel‑>yield(

052 � 'keep_alive');

053 � $kernel‑>yield(

054 � 'heartbeat');

055 � },

056 � sig_child => sub {

057 � delete $_[HEAP]‑>{wheel};

058 � },

059 � heartbeat => \&heartbeat,

060 � up => \&up,

061 � down => \&down,

062 � keep_alive => sub {

063 � $_[HEAP]‑>{countdown} =

064 � $_[HEAP]‑>{timeout};

065 � },

066 � closing => sub {

067 � $_[HEAP]‑>{is_up} = 0;

068 � },

069 � }

070 �)‑>ID();

071 �}

072

�073 �#############################

074 �sub heartbeat {

075 �#############################

076 � my ($kernel, $heap) =

077 � @_[KERNEL, HEAP];

078

�079 � $kernel‑>delay("heartbeat",

080 � $heap‑>{heartbeat});

081

�082 � if ($heap‑>{is_up}) {

083 � INFO

084 �"Process is up for another ",

085 � $heap‑>{countdown},

086 � " seconds";

087

 Listing 3: PoCoTimedProcess.pm

33A D M I N S p ec ia l : T R I C KS w it h SS L and SS Hw w w. admin - ma ga z in e .co m

T ri c ks w it h ss l and ss hPerl: Drilling SSH Tunnels

with the delay() POE kernel function.
This game can go on for a couple of
rounds, but the tunnel will come up
eventually. The TCP client then binds
the port, which is now working, and can
enter the Connected state as of line 73.

The Tunnel is Ready
If Minimail sends a command, the TCP
server branches to the client_request
state and thus to the handler (lines 100-
114), which checks that the tunnel is al-
ready up and ignores the client com-
mand if the connection is down. The
SMTP protocol stipulates the server has
to start the communication with a greet-
ing. A well-behaved client will not start
to talk until the server says hello, which
only happens if the tunnel is up. With
other protocols (e.g., HTTP), it is differ-
ent; in this case, the forwarder would
have to buffer the client commands until
the connection was up, then forward
them in lieu of the client in a bundle.

If the tunnel is ready, the heap vari-
able connected is 1 in the Connected
state handler. To forward the message
to the tunnel, line 112 retrieves the
saved TCP client heap and pulls out its
server entry, whose put method is then

used to forward the request to the tun-
nel entry the client docked onto earlier.
Note that client_request() is a server
session callback that knows nothing
about the client’s heap or the client,
which is running in another session.
The client_heap heap variable, set in
line 93 in the server session, solves this
problem.

When messages come back out of the
tunnel, the TCP client switches to the
ServerInput state in line 65, which then
uses put() on the client reference stored
on the heap, to return text to Minimail.
If Minimail disconnects from the TCP
server, the server enters the Discon‑
nected state, and the handler sends a
shutdown event to the running session
(line 77), finally interrupting the client
server connection.

Processes with
Countdown
Handlers in the PoCoTimedProcess.pm
component (Listing 3) set up and break
down the tunnel. When minimail uses
spawn (line 62) to launch the process
timer’s POE session, its first course of
action is running the _start handler de-
fined in PoCoTimedProcess.pm (line 40).

The handler in turn uses a closure to ex-
tract all the critical parameters, such as
heartbeat (check frequency for a time-
out), timeout (number of seconds until
tunnel breakdown), and command (the
SSH command for setting up the tunnel)
from the self object hash and stores
them on the session’s own heap. It then
sets two events for processing by the
POE kernel at a later stage: keep_alive
and heartbeat. The former resets the
heap countdown variable to the maxi-
mum value in seconds to keep a tunnel
open, which is defined in timeout. Addi-
tionally, POE calls the heartbeat event at
regular intervals, thanks to the delay
method in line 79, every time the num-
ber of seconds defined in the heap
heartbeat variable has elapsed.

The tunnel is closed at first, but as
soon as the launch() method triggers
the up event and POE activates the
matching up handler (line 103), a
POE::Wheel::Run object (line 119) fires
up the SSH tunnel process. The han-
dlers for the Unix INT and TERM signals
defined in lines 134 and 136 ensure that
the minimail process will tear down an
open tunnel if the main script is killed
unexpectedly.

�088 � $heap‑>{countdown} ‑=

089 � $heap‑>{heartbeat};

090

�091 � if (

092 � $heap‑>{countdown} <= 0)

093 � {

094 � INFO

095 �"Time's up. Shutting down";

096 � $kernel‑>yield("down");

097 � return;

098 � }

099 � }

100 �}

101

�102 �#############################

103 �sub up {

104 �#############################

105 � my ($heap, $kernel) =

106 � @_[HEAP, KERNEL];

107

�108 � if ($heap‑>{is_up}) {

109 � INFO "Is already up";

110 � $_[KERNEL]

111 � ‑>yield('keep_alive');

112 � return 1;

113 � }

114

�115 � my ($prog, @args) =

116 � @{ $heap‑>{command} };

117

�118 � $heap‑>{wheel} =

119 � POE::Wheel::Run‑>new(

120 � Program => $prog,

121 � ProgramArgs => [@args],

122 � CloseEvent => "closing",

123 � ErrorEvent => "closing",

124 � StderrEvent => "ignore",

125 �);

126

�127 � my $pid =

128 � $heap‑>{wheel}‑>PID();

129 � INFO "Started process $pid";

130

�131 � $kernel‑>sig_child($pid,

132 � "sig_child");

133 � $kernel‑>sig(

134 � "INT" => "down");

135 � $kernel‑>sig(

136 � "TERM" => "down");

137

�138 � $_[KERNEL]

139 � ‑>yield('keep_alive');

140 � $heap‑>{is_up} = 1;

141 �}

142

�143 �#############################

144 �sub down {

145 �#############################

146 � my ($heap, $kernel) =

147 � @_[HEAP, KERNEL];

148

�149 � if (!$heap‑>{is_up}) {

150 � INFO

151 � "Process already down";

152 � return 1;

153 � }

154

�155 � INFO "Killing pid ",

156 � $heap‑>{wheel}‑>PID;

157 � $heap‑>{wheel}‑>kill();

158 � $heap‑>{is_up} = 0;

159 � $kernel‑>sig_handled();

160 �}

161

�162 �1;

 Listing 3: PoCoTimedProcess.pm (part2)

34 A D M I N S p ec ia l : T R I C KS w it h SS L and SS H w w w. admin - ma ga z in e .co m

Perl: Drilling SSH TunnelsT ri c ks w it h ss l and ss h

Once the tunnel has reached its maxi-
mum lifetime, line 96 triggers the down
event and the matching handler (line
144) sends a kill signal to the ssh pro-
cess. To let other handlers know that the
tunnel no longer exists, down() sets the
is_up variable to 0. This completes the
processing of the triggering signal; the
call to sig_handled() in line 159 pre-
vents the POE kernel from acting on it as
well, which would be undesirable be-
cause the kernel’s default action on
these signals is to terminate the daemon.

To prevent the killed process mutating
into a zombie, joining a growing army of
other zombies, and finally bringing the
computer to its knees, line 131 defines a
sig_child handler, which reaps the
dying process and then enters the sig_
child state of the POE session, defined
in line 56. This helps POE give the dying
tunnel its last rites (internally, via wait‑
pid()) and prevents it from going to
zombie hell. The handler finally deletes
the last remaining reference to POE::​
Wheel. If POE figures out it has nothing
left to do, it’ll neatly fold up the kernel.

Keys Instead of
Passwords
Because a daemon can’t use an interac-
tive password dialog to identify itself,
the ssh tunnel command requires the
user to create a keypair:

ssh‑keygen ‑t rsa

The keys will typically be stored in the
id_rsa (Private Key) and id_rsa.pub
(Public Key) files in the .ssh directory
below the user’s home directory.

To make sure the hosting service pro-
vider lets the daemon connect to it, the
user has to push the public key created
with the no passphrase option to the
server. This involves appending the
local content of the id_rsa.pub file to the

.ssh/authorized_keys file on the hosting
server. If you then enter the ssh tunnel
command in Minimail manually (with-
out the ‑N option), you should be logged
in to the hosting server without being
asked for your password.

Trial Run with Telnet
The Telnet command in Figure 2 with
localhost and port 25 discovers whether
the mail server that was launched by
sudo minimail start really works. If the
daemon tunnel is down, Minimail will
delay the response by one or two sec-
onds until the server provider-side re-
sponds and then patch through to the
SMTP server on the other end (Figure 3).

If you speak some SMTP, you can try
out a couple of tricks (for test purposes
only, of course – Figure 4). The daemon
will busily take note of this in the /var/
log/minimail.log logfile (Figure 5). It
will not store the mail headers or text for
data protection reasons.

While running tests with the telnet
command, you can get out of a hung
session caused by a server not releasing
the client by pressing the keyboard
shortcut Ctrl+], which takes Telnet
down into a shell that you can terminate
by pressing q.

Waiting for a Power
Failure
To launch the Minimail server automati-
cally every time you boot your machine,
you need to add

SUDO_USER=mschilli /path/to/minimail

on Ubuntu to the /etc/init.d/minimail
file, which you might need to create,
then make the file executable with chmod
+x and finally call

sudo update‑rc.d minimail defaults 80

to add the script to the boot process.
When the power returns, the new mail
server boots automatically and makes
sure it is ready to take messages once
Nagios reports that power has been re-
stored and disaster averted. nnn

[1]	� Listings for this article:
http://​www.​linuxpromagazine.​com/​
Resources/​Article‑Code

[2]	� Dropping privileges, but properly:
http://​perlmonks.​com/​?​node_
id=833950

 Info

Mike Schilli works as
a software engineer
with Yahoo! in
Sunnyvale,
California. He is the
author of Goto Perl 5
(German) and Perl Power (English),
both published by Addison-Wesley, and
he can be contacted at mschilli@
perlmeister.com. Mike’s homepage can
be found at http://​perlmeister.​com.

 Author

Figure 5: The daemon logs critical events.

Figure 2: When a message needs to be sent,

Minimail needs to open the tunnel for the

first request …

Figure 4: … and the client can then exchange

SMTP commands as if connected directly. The

server thinks it is talking to a local client.

Figure 3: … then the SMTP server at the

other end of the tunnel will respond within

about one or two seconds …

35A D M I N S p ec ia l : T R I C KS w it h SS L and SS Hw w w. admin - ma ga z in e .co m

T ri c ks w it h ss l and ss hPerl: Drilling SSH Tunnels

http://www.linuxpromagazine.com/Resources/Article-Code
http://www.linuxpromagazine.com/Resources/Article-Code
http://perlmonks.com/?node_id=833950
http://perlmonks.com/?node_id=833950

	Cover
	Welcome
	SSL authentication with Apache
	Using a Squid proxy with HTTPS
	Using the OpenSSL toolkit with Bash
	Secure connections with SSH
	Key-based authentication with SSH and VNC
	Doing more with SSH
	Perl script tunnels mail traffic on demand

