
Lead Image © Lucy Baldwin, 123RF.com
System temperature as a dimension of performance
Heat Seeker
Excessive or just elevated temperature is sometimes the source of unexpected behavior in computing components – I faced it firsthand once, with runaway CPU heat burning through an older Slot I Pentium 3 processor. The cause was a detached heat sink, and some older hardware did not have built-in protection circuitry back then. I have also had fun experiencing intriguing boot failures from an overheating hard drive in a system equipped with one too many peripherals. In recent times I have taken a more preemptive stance, monitoring the heat build-up in a Raspberry Pi cluster as the case fan was replaced (Figure 1) [1]. To silence a desktop cluster, I replaced the built-in fan with a slower, silent fan made by specialty vendor Noctua [2]. Because the newer fan used fewer revolutions per minute to get the job done, I had to verify that the temperature inside the case remained roughly the same after the change:
vcgencmd measure_temp
The output quickly demonstrated that the temperature remained within the same range it had with the older fan. The vcgencmd
utility is a tool made by Broadcom to access the state of the VideoCore GPU found
Buy this article as PDF
(incl. VAT)
Buy ADMIN Magazine
Subscribe to our ADMIN Newsletters
Subscribe to our Linux Newsletters
Find Linux and Open Source Jobs
Most Popular
Support Our Work
ADMIN content is made possible with support from readers like you. Please consider contributing when you've found an article to be beneficial.
